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of cubic-symmetric spin systems in which disorder pre-
This includes spin models in the presence of random

cubic-symmetric anisotropy with probability distribution vanishing outside the lattice axes. Using nonpertur-
bative arguments we show the existence of a stable fixed point corresponding to the random-exchange Ising
universality class. The field-theoretical renormalization-group flow is investigated in the framework of a

fixed-dimension expansion in powers of appropriate

quartic couplings, computing the corresp8ridirgy

tions to five loops. This analysis shows that the random Ising fixed point is the only stable fixed point that is

accessible from the relevant parameter region. The

refore, if the system undergoes a continuous transition, it

belongs to the random-exchange Ising universality class. The approach to the asymptotic critical behavior is
controlled by scaling corrections with exponent —«,, wherea, =-0.05 is the specific-heat exponent of the

random-exchange Ising model.

DOI: 10.1103/PhysRevE.70.036104

I. INTRODUCTION AND SUMMARY

The critical behavior of magnetic systems in the presenc
of quenched disorder has been the subject of extensive th
oretical and experimental study. An important class of sys

tems is formed by amorphous alloys of rare earths with as

pherical electron distribution and transition metals, for
instance ThFeand YFeg. These systems are modelgd2]
by the Heisenberg model with random uniaxial single-sit
anisotropy, or, in short, by the random-anisotropy mode
(RAM)

Hram = =2 8§~ Do (U, -S)%, )

(xy) X

wheres, is anM-component spin variablé, is a unit vector
describing the localspatially uncorrelatedrandom aniso-
tropy, andD is the anisotropy strength. In amorphous alloys
the distribution ofii, is usually taken to be isotropic, since in

the absence of crystalline order there is no preferred directh

tion. On the other hand, in polycrystalline materials, for in-
stance in the Laves-phase intermetallizy,Y ;_,)Al, com-
pounds studied in Refs[3,4], the distribution of Gy is
expected to have only the lattice symmetry.

The critical behavior, and in particular the nature of the

low-temperature phase, of a generic system with random an-

isotropy depends on the probability distribution of the ran-
dom vectort,. In the isotropic case, i.e., when the probabil-
ity distribution is uniformly weighted over the
(M -1)-dimensional sphere, the Imry-Ma argumgsyg] for-

PACS nuner64.60.Ak, 75.10.Nr, 75.10.Hk

nishing magnetization fod<4. This still allows the pres-
nce of a finite-temperature transition with a low-
emperature phase in which correlation functions decay
algebraically, as happens in the two-dimensiok# model.
Such behavior has been predicted for the RAM with isotro-
pic distribution in Ref[7] and it has been recently supported
by a 4-e study [8,9] using the functional renormalization

cdroup (RG) [10]. On the other hand, standard field-

Itheoretical perturbative approaches do not find any evidence
for a critical behavior with long-range correlatiofisl-14.
While experiments have not yet found evidence of low-
temperature quasi-long-range order, numerical simulations
seem to confirm the picture of Refg-9], but are still con-
tradictory as far as universality and behavior in the strong-
anisotropy regime are concernglh,16. For these reasons,
the critical behavior of the RAM can still be considered as an
open problem.

The above arguments do not apply to spin models with
e discrete anisotropic distribution introduced in Réfl],

in which the vectord, points only along one of thbl lattice
axes, i.e., it has the probability distribution

()

M
LS M-+ MG R)] (2
2M a5

whereX, is a unit vector that points in the positieedirec-
tion. This model, which we shall call the random cubic an-
isotropic model(RCAM), should have a standard order-
disorder transition: The random discrete cubic anisotropy

bids the appearance of a low-temperature phase with nonvapq 4 stabilize a low-temperature phase with long-range
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ferromagnetic order. On the basis of two-loop calculations in
field-theoretical frameworks, it has been arg(i#d,18 that

the transition belongs to the universality class of the random-
exchange Ising mod€éREIM) for any numbemM of compo-
nents.
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In this paper we study the critical properties of the three- H=-338 .8 -K 4 _ D 5
dimensional RCAM. We consider the field-theoretical ap- %S“ e EX: Ea"sx’a ngaqu'ai’a' ©

proach based on the Landau-Ginzburg-Wilsgh Hamil-

tonian[11] where =1 and g, is a random vector with a probability
distribution that is invariant under the interchangg— qp.
1 1 The exact reflection symmetry at fixed disorder—this sym-
- | 4 = 32 27, — y Y y Yy
HLGW_I d X{% 2[((9"%') troalt 4l ”za%) (Up + 000 metry is not present in generic models of tyfig—is the key
property that allows the RCAM and the more general class
of models(5) to have a standard order-disorder transition
+Woday+ Yo Sar) B2 7 | 3 )

with a low-temperature magnetized phase.
The paper is organized as follows. In Sec. Il we apply the

wherea,b=1,... M andi,j=1,... N. In the limit N—0  replica method to the* theory corresponding to mode($)
the Hamiltonian(3) is expected to describe the critical be- and(S), determining the Correspondir‘éj1 Hamiltonians that
havior of the RCAM forM-component spins. Using nonper- are the basis of the field-theoretical approach. In Sec. Ill we
turbative arguments, we show that the field theory Withdiscuss some genera| properties of the thQG}y"] particu-
Hamiltonian(3) has two stable fixed pointé=P’s). One of  |ar, we discuss the crossover behavior when randomness is
them belongs to the REIM universality class while the othefyeak, and we prove that the REIM FP is stable by evaluating
corresponds to the @) model in the limitN— 0, the so- jts stability eigenvalues. In Sec. IV we investigate the RG
called self-avoiding-walk universality class. Then we inves-flow by computing and analyzing the five-loop fixed-
tigate the RG flow for the model with Hamiltonig8) in the  dimension expansion of th@ functions associated with the
framework of a fixed-dimension expansion in powers of apzero-momentum quartic couplings. In Appendix A we report
propriate zero-momentum quartic couplings. We compute thg six-loop calculation of the RG dimensions of the bilinear
corresponding Callan-Symanzjg functions to five loops. operators in cubic-symmetric models that are used in the
Their analysis shows that the only accessible stable FP fromiscussion of the stability of the FP’s. Appendix B reports the
the region of parameters relevant for the RCAM is the REIMproof of some identities used in the paper.
FP. This implies that the critical behavior of the RCAM
(when the parameters allow a continuous transjtlmelongs
to the REIM universality class, whose critical exponents are

1;=0.6833), ¢,=-0.0499), ,=0.0352), etc.[19]. The ap- The mapping of the RAM Hamiltoniafl) to an effective
proach to the REIM scaling behavior is characterized by veryranslationally invariant* Hamiltonian was originally dis-
slowly decaying scaling corrections proportionaltfowith  cussed in Ref[11]. In order to replace fixed-length spins
A=-¢;~0.05, which is much smaller than the scaling-with unconstrained variables, one performs a Hubbard-
correction exponent of the REIM, whichdg ~0.25[20,2Y.  Stratonovich transformation. Then, for the purpose of study-
Our results fully confirm and put on a firmer ground the ing the critical behavior one considers the continuum limit of
conclusions of Refg17,18 based on two-loop perturbative the resulting Hamiltonian and truncates its potential to fourth

calculations. order. This leads to an effective continuugf Hamiltonian
It is important to note that our results are specific to dis-for an M-component real field,,

tributions that vanish everywhere outside the lattice axes,

such as the one given in E@2). Indeed, generic cubic- R T I SO A Lo, 1o,
symmetric distribution®(d), and in particular the isotropic /1= | 4 2(‘9#@) Toret D )"+ 4!"0("" )
one, give rise to an additional quartic term that should be

ll. EFFECTIVE ®* HAMILTONIANS

added to the effective Hamiltoniaid), i.e, 6)
where U, is an external spatially uncorrelated vector field
202 baiPiPaj b @ with parity-symmetric distributionP() and D is propor-

0 tional to Dy. We relax here the conditiod=1 and require

The REIM FP is unstable with respect to this perturbationonly that(i2=1, thereby fixing the normalization @. Us-

We shall evaluate the corresponding crossover exponenig the standard replica trick it is possible to replace the
finding ¢,=0.794). Therefore, even small differences from quenched average with an annealed one. The system is re-
the discrete distributioR(U) cause a crossover to a different placed byN noninteracting copies with annealed disorder.
critical behavior. Nonetheless, whéh(U) turns out to be a Then, by integrating over disorder, one obtains the following
good effective approximation—this might be the case ineffective Hamiltonian:

some crystalline  cubic-symmetric random-anisotropy .

systems—REIM critical behavior may be observed in a 1 1

p)r/easymptotic region. y Hrepi = f ddxl% E(aﬂ(l&ai)z + §r§ ¢§i + zvoi% d;j d’ii@ﬁg]’

The general Landau-Ginzburg-Wilson Hamiltonig8) ' J
can also be recovered by considering systems with cubic IR ¢)] )
anisotropy such that disorder preserves the symmstyy '

—~S¢a Sxb— Sxp DFa. A general Hamiltonian with this
property is given by wherea,b=1,... M, i,j=1,... N, and
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N if the system is only cubic symmetric, quartic single-ion
R(¢) = - |nf d UP(U)eXP(D% Uan¢ai¢bi>- (8  terms must be included. In this case it is natural to consider
1al
In the limit N— 0 the Hamiltonian(7) is equivalent to the H=-I2 5§~ Doz (Gy-S)% + KE 2 Scar (19
Hamiltonian (6) with quenched disorder. The expansion in )

powers of the fieldp can be expressed in terms of the mo- and the corresponding®* Hamiltonian
ments of the distributiodP(U),

H=| d%| =(3,0)%+= D (222
Ma1a2 A deUP(ﬁ)Ua U, ... Ug, - (9) f X[ (M(P) I’(p (- (P) + UO((P)

1
One obtains + Zyoz gog] . (16)
* a

Hrepi= f ddX[‘E (3upai)® + fz Bhi+ voz baidh The Hamiltonian(14) was originally introduced in Ref12]
to describe magnetic systems with single-ion anisotropy and
1 9 nonmagnetic impurities.
- DE Mabaippi + §D2<2 Mab¢ai¢bi> There are two interesting particular cases. First, one may
fab 1ab consider an @M)-invariant pure system coupled to an iso-
1, 6 tropic distribution P(u). In this caseK=0 in Eq. (15—
- ED E MabcdbaiPoideida; + O(¢) |- (10 therefore,y,=0—andB=0 in Eq.(12), so thatwy=0. These
labed conditions are preserved under renormalization by the pres-
Let us consider the case in which all field components beence of the @M) invariance. Note that this is not the case if
come critical aff... This is achieved if the distributioR(() is K#0, i.e., if yo# 0. Distributions such thaB=0 (these dis-
such that tributions are not necessarily isotropigive apparentlyw,
1 =0; however, such a condition is not preserved under renor-
My = — Sap. (1) malization if zy# 0.
M A second interesting case corresponds to distributions
P(u) such thatA=0 in Eq. (12). It is easy to show that
distributionsP(u) with this property are simple generaliza-
tions of the distribution(2). Explicitly, they have the form

This condition is satisfied iP(u) is cubic symmetric. Under
this further assumption, the fourth momeMt,,.q can be
written as

Mabcd= A(Sapbed + Faclbd + adOhc) + Bapca: (12) P(u) = 2 f(uy) H aUy), (17)
whereA andB are parameters depending on the distribution; bra
they satisfy the Cauchy inequalitiéM+2)+B=1/M and \\heref(x) is a normalized probability distribution with unit

3A+B=1/M? It follows that variance. IfA=0, Eq.(13) implies z,=0. Such a condition is
stable under renormalization. Indeed, the transformation
Hrepi= jd X{—E (<9,L¢a.)2+ (r —D/M)E b5 ¢ai— — b for fixed a andi is a symmetry of the Hamil-
tonian withzy=0, but not of the term proportional #3. This
symmetry is due to the fact that, for distributions of type

4|v02 Bhidh + 2M2(1 MZA)(E ¢a|> (17), we can write(S-G)?=3,u’s2, which is symmetric under
the transformations,— —s, at fixed u. In other words, the
) 6 theory with z;=0 describes models in which the reflection
-AD %) baiPviaj Poj ~ ”Ea Badba;+O(¢9) |. symmetry of the spins is also preserved at fixed disorder.

In the case of discrete cubic-symmetric distributions of
(13)  type(17), we have

In conclusion, for generic cubic-symmetric distributions 12D2
P(0) the Hamiltonian that should describe the critical behav- U="—5,
) . . M
ior of the corresponding RAM is

1 1
=f ddX{ 52 (3 ba)” + EFE ¢5it E [(Up +vod;

4lan Ug> 0, Wy <0, Mug+wy <0, (19

W= — 12BD?. (18)

These conditions imply

2 .2 where the last condition follows from the boui=1/M.
* Wodap + Yodij San) Paibh; + Zoaibuidainil [+ (14 The equalityMuy+w,=0 is obtained by using the distribu-
tion (2). The relationg18) and(19) should be considered as
where the term proportional tg, has been added because it indicative, since the mapping between tl# Hamiltonian
is generated by RG iterations whenevegy# 0. It should be (16) and the general Hamiltonia(l4) also gives rise to
noticed that such a term arises naturally if one considers thahigher-order terms.
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It is also interesting to consider the effective continuumthe theories obtained when some of the quartic parameters

Hamiltonian corresponding to E¢p). In this case we obtain

1 .. 1. 1
quff d%| =(0,)%+ Zrg? — D Gah + —vo(¢)?
2 2 A 41

+ %YOE @3} : (20
" a

If P(g) is invariant under the interchanggs— q,, we can

write for the first momentsM,=a and M,,=b+cé,, A

simple calculation gives again the general Hamiltor(ih4)

with z,=0 and

D? cD?
— 2 —
Up=—(@ -b), wog=———. 21
0= ( ), Wo 5 (21)
Sinceb+c=a?, we obtain
Up+Wwy=<0. (22

Equality is obtained foP(q)=11,6(g,—1) (in this case how-
everwy=0). Finally, note that ifc=0 then we haven,=0.

vanish. For example, we can easily recogniagethe QM

X N) theory forvy=wg=y,=0; (b) N decoupled @M) theo-
ries for uy=wy=Yyy=0; (c) M decoupled @N) theories for
Up=v0=Yo=0; (d) M XN decoupled lIsing theories fou,

=vpo=Wp=0; (e) the MN model(see, e.g., Refd23,24) for

Wo=Yp=0; (f) the NM model forvy=y,=0; (h) N decoupled
M-component cubic models fap=wy=0; (i) M decoupled
N-component cubic models foruy=vy=0; (j) the
(M X N)-component cubic model far,=wy=0; (k) the ran-
domly dilutedM-component cubic modésee Ref[22]) for

wy=0 andN=0; and(l) the tetragonal modgR3,25 for M

=2 andwy=0.

The FP’s of these theories are also FP’s of the enlarged
model (3). Of course, there may also be FP’s that are not
related to the above particular cases. Their presence can be
investigated by low-order-expansion calculations. First-
order e-expansion calculationg 1] show the presence of 14
FP’s for M#2 and of 13 FP’s foM=2. As in the REIM
case, at two-loop order other((x) FP’s appeaf12]: four
FP’s for M#2 and six FP’s forM=2 [17]. The two-loop

Such a condition is stable under renormalization, and thug-expansion results are summarized in Rgfs7,18. In
this class of models is expected to have a different criticalTable | we report the leading-expansion terms for the lo-
behavior. It corresponds to the one of the randomly dilutecation of the FP’qin the minimal-subtraction renormaliza-
cubic models discussed in RgR2]. Distributions with this  tion schemg and the corresponding stability eigenvalues.
property are, however, quite peculiar. They have the generdlhe only stable FP’s are the(@ and the REIM FP’s, which
form are already present in mode&k and(i), respectively. These
results have also been supported by two-loop fixed-
dimension calculationgl?]. In order to understand the rel-
evance of the various FP’s for the RCAM, we need to check
which one is accessible from the region of quartic parameters
relevant for the three-dimensional RCAM. This issue will be
investigated in Sec. IV by computing and analyzing five-loop
series in the framework of the fixed-dimension expansion.

M
P(g) = f(ql)f_[2 80y~ ). (23)

The stability region of the quartic potential in thg*
Hamiltonian(3) is given by the conditions

NUp + vg+ Nwg +yg >0, (24
NMug+ Mug + Nwy + Yy > 0, (25) B. Crossover behavior close to the pure spin model
The QM)-symmetric FP located on the axis describes
Up+vg+Wo+Yo=>0, (26)  the critical properties of the pure spin system in the absence
of cubic anisotropy. It is interesting to compute the crossover
Mug + Mug +Wp +Yo > 0. (27)  exponent in the presence of random anisotropy. Setiing

However, as discussed in R¢12], in the zero-replica limit =(T-Tp)/T,, whereT,=T(D,=0) is the critical tempera-
N—0, the only relevant stability conditions are those ob-tUré in the absence of anisotropy, in the limgjt-0 andDq
tained by using replica-symmetric configurations. Therefore;~ 0 the singular part of the free energy can be written as
fo.r the RCAM one should consider only Eq24) and (25) F= |ut|2‘“f(D(2)|ut|‘¢D), (29)
with N=0, i.e.,
whereutztp+alD§+a2t§+--- is the scaling field associated
with temperature,« is the specific-heat exponent in the
O(M) theory, ¢p is the crossover exponent, ari¢k) is a
(28) scaling function. As a consequence of Eg9), for suffi-
Equivalently, the relevant stability conditions can be ob-ciently smallD, the critical-temperature shift is given by

tained by considering the Hamiltonia(i6) and/or(20). AT(Dg) = T(D) - T(0) = aDS""D + bD(2)+ cDé+
(30

The crossover exponei is related to the largest positive

RG dimension of the perturbations at théMD FP that are
The properties of the RG flow are essentially determinedresent in the Hamiltonia(8), i.e., of the terms proportional

by its FP’s. Most of them can be identified by consideringto Uy, Wy, andyy. For up=wy=y,=0, the Hamiltonian(3)

vo+Yo>0if vy>0,

Mug+Ye >0 if vy <O.

Ill. GENERAL RENORMALIZATION-GROUP
PROPERTIES

A. Fixed points of the theory
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TABLE I. Fixed points of the Hamiltoniaii3) near four dimensions. We report the leading nontrivial contribution of the expansion in
powers ofe, taken from Refs[11,17. Here, K4=(4m9(d/2)/2, a,=(M-4£\M?+48)/8, B,=—(M+12+\M?+48)/6, A,,=6a,+38,
+M+6. The general expressions for the stability eigenvalues of FP’s XI-XIV are rather cumbersome. We report their numerical values only
for M=3.

v* /Ky u*/ Ky w*/ Ky y* I Ky Stability eigenvalues

| Gaussian 0 0 0 0

Y= W, = Wy = oy= "€

1l oM _6_ 0 0 0 - —_4M —_&M —4M
M) M+8€ Wy =€, 0y=" g€ Ow= T \ig € Wy T yig€
1 0(0) 0 2e 0 0 0= €,0,= 0= wy=€l2
\% 0O(0) 0 0 %5 0 o =0,=—€/2,0,=€,0y=€l2
\% Ising 0 0 0 %6 0= w,=0y=—€/3,0,=€
Vi 3 3(M-4) 0 0 _ _ __4M __ &M
2m-1) € D€ W17 €, W= Wy =70y € Dw= T3v-1) €
Vil 0 2e = 0 =0, =€, 03= 0, =€
i 2 2AM-4) _ __4M __4M -
Vil Cubic 2, 0 0 e o=w=—Me 0, =-Me =€
IX M %2 1 M-4 0 M4 Yy ~(4+M) ~(4-M)
M-2€ a2 € 3M-2 € W17 €, 0= 575 €, O 5y 4= 5o €
X 0 %e —%e %e w;=€,0,=w3=€/3,w=—€/3
XI 3 3ay 3(M+4) 3B+ = = —wy=— =
A€ e e e w1=€,0,;=1.33, w3=w,=—1.43 (for M=3)
Xl prm Sar M+ 36 w1=€,wp=~w3=0.371, w;=—0.34% (for M=3
i€ A€ A€ A 15€, =03 o ( )
Xl 3 3a_ 3(M+4) 3p: € W= —wa= = =
A€ e e e w1= €, wy=~w3=0.435 w,=-0.40ZF (for M=3)
XV 2 Sa 3M+4) - 1= €, W= w3=—3.32%, w,=—3.08 (for M=3)
A A € —
XV REIM 0 0 Iy“‘g—g\s“e i%\g—g\e wu=wv=w1=i\““§—;\5€,w2=26
XV REIM 0 I\g—;\e 0 i%\g—g\e Wy W, =W = F \fé—g)Qe,wzzze
Xvii M=2 2 - NN 0 NN o A _
+2\g5zVe *\gzVe *3V53V€E Wy=W3=—01= F \53VE 0= 2€

describesN decoupled @M)-symmetric systems. The RG M=2, we havey,<0 and therefore the corresponding term

dimension of the terms proportional 1@ and w, can be is always irrelevant. The exponewt has been obtained by

determined by writind11] using field-theoretica]26] and Monte Carlo methodg9]:
field-theoretical analyses givg;=1.7666) for M=2 and
yr=1.7903) for M=3, while Monte Carlo simulations give

2 42 _
%_ (Uo + Wodap) 4565 = M(Mug + Wo) X Ei€; yr=1.7582) for M=2 andy;=1.7872) for M=3. Corre-
o ! spondingly, we findy,,=0.53212) andy,,=0.51%6) for M
+ W, ToaiTaajs 31 =2, andyW:O:58(16) andyW:O.5711I_3) for M=3. Therefore_,
ija the perturbation proportional tey, is always relevant. Fi-

nally, using the results of Reff26,27 for the spin-4 pertur-
bations at the QM) FP, we havey,=-0.1038) for M=2 and
where y,=0.0136) for M=3. This implies that the term is irrel-
evant forM=2, but relevant forM=3. In conclusion, for
bothM=2 andM =3, the most relevant quartic perturbation
1 is given by thew term, which determines the crossover from
&= Mz o Tabi = baichoi = darfi- (32 the pure critical behavior in the limit of small anisotropy
é strength. Thereforegpy=y,,»=0.3543) for M=2 and ¢p
The bilinearss; and 7,,; are, respectively, the energies and =y, »=0.4123) for M=3. In the crossover limit in which
the quadratic spin-2 operators of tNedecoupled models. If Djju| =0 is held fixed, the operators with RG dimensigns
ye=1/v and y; are the corresponding RG dimensions, theandy, give rise to scaling corrections. In particular, there are
two terms given above have RG dimensions2yg—3 corrections proportional tot®y, with Ay=yyv—dp, Ay
=alv andy,=2y;—3. The perturbation proportional t,  =0.4266) for M=2 andA,=0.4035) for M=3, which are
does not couple the different replicas and therefore its RG@nore important than the usual(&)-invariant corrections,
dimensiony, is simply the RG dimension of the cubic per- which vanish as$®, with A=0.54 forM=2 andA =~ 0.56 for
turbation, which is related to the RG dimension of the spin-4M =3 [25].
perturbation of the @) FP [26,27. Therefore, the QM) It is worth mentioning that the scaling behavi@9) with
FP is perturbed by three terms of RG dimensigpsy,, and  the same crossover exponefy also holds for a RAM with
yy» which can be determined using known results for the R@eneric distributionP(d), and in particular for the isotropic
dimensions of generic operators in athD theory; see, e.g., case. Indeed, the additional term proportionattappearing
Refs.[28,25 for reviews of results. Since is negative for in the Hamiltonian14) has the same RG dimension of tve
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term at the @M) FP. This can be inferred by rewriting Therefore, a generic cubic-symmetric RAM shows a differ-
ent crossover behavior with crossover exponépt=y,v

2. Pai Pi Pajbo; = E TaviZTan+ ME Eé&js (33 0.4223).
abij abij !y C. Stable fixed points

The critical behavior in the presence of random aniso-
tropy should be described by the stable FP of the thé®ry
which is accessible from the RCAM. The two-loop
e-expansion calculations of Refl7] summarized in Sec.
Il A find two stable FP’s. One of them is located on the
axis, and it is associated with thg@ or self-avoiding-walk
universality class. This FP is also stable in three dimensions.
Indeed, the terms proportional tg, wy, andy, are interac-
tions transforming as the spin-4 representation of ttim O
X N) group. Therefore, they have the same RG dimension
which is given byy,,,,=-0.3715), obtained in Ref.[26]
from the analysis of six-loop fixed-dimension and five-laop
series. It was argued in RefL7], on the basis of two-loop

Y L _ . o . calculations, that the @) FP is not accessible from the pa-
~Dg ", obtaining ¢=0.808).This result is in substantial rameter region relevant for the RCAM. This will be con-

agreement W't,h the theorgtlcal predictiaTe(Do) ~ Do, but firmed by the five-loop analysis of the RG flow presented in
does not provide information on the crossover expoRgnt  gac v/

ForM =3, pure systems with the Hamiltonighb) do not For uy=v,=0 the Hamiltoniar(3) corresponds to a cubic-
have a critical behavior in the (™) universality class; see, symmetric model and, fak— 0, it is the sum oM indepen-
e.g., Refs[23,27,22. If the system hagl1l]] as the €asy gent models that are the field-theoretical analog of the
direction, its critical behavior belongs to a different univer- v, We will now show that the REIM FP is stable in the
sality class with reduced cubic symmetry, while systems Withpeory (3). It is sufficient to show that the terms proportional

[110] easy axis are expected to show a first-order transitiony, . andy, are irrelevant. For this purpose, we rewrite
In the latter type of system, randomness may soften the first-

order transition. This issue will be discussed in Sec. IV C. > (Up+ Uo‘sij)d’gi(ﬁﬁj =N(NUy+vo) >, E2+ v, U2,
On the other hand, we now show that in cubic systems with  ijab a ai
[111] easy axis randomness is a relevant perturbation and (34)
therefore, for small randomness, these systems show a cross-
over behavior with positive exponedtiy; cf. Eq. (29). For ~ where £,=(1/N)S;¢% and Uy=¢5~E,. For N—0, & and
Up=Wy=0 the Hamiltonian3) reduces to the one fdd de- U, have the same RG dimensigsee Appendix A for the
coupled systems with cubic symmetry. The RG dimensiongroof), ye=yy=1/v,, wherev, is the correlation-length criti-
of the terms proportional ta, andw, at the cubic FP pro- cal exponent of the REIM universality class. Therefore, the
vide the crossover exponett,. In order to determine them, RG dimension of the perturbation is given By, =2y—3
we use again Eq.31). The RG dimension of; is yg=1/v, =a,/v,, Whereq, is the REIM specific-heat exponent. Since
where v is the correlation-length exponent, while that of «, is negative (see the estimates reported in Refs.
U= Tai Yu, is computed in Appendix A by resumming its [25,31,19), the REIM FP is stable. Using the recent Monte
six-loop perturbative expansion. Thus, the RG dimensigns Carlo results reported in Ref19], we finally arrive at the
andy,, of the two terms appearing in the right-hand side ofestimatey,,~-0.07. As we shall see in Sec. IV, the REIM
Eg. (31) are given byy,=2ye—3=a/v andy,=2y,—3, re- FP turns out to be accessible to the RCAM, and no other
spectively. Sincew<0 at the cubic FP for anM =3, the stable FP exists in the region relevant for the RCAM. There-
first term is irrelevant. On the other hand, the estimateg,of fore, the REIM universality class describes the critical prop-
reported in Appendix A show that,>0 for anyM=3. For  erties of the RCAM in the case it undergoes a continuous
example y,=0.54914) for M=3, and therefore ¢  transition. Estimates of several universal quantities for the
=0.38714). REIM universality class can be found in Refg5,31,19,32
Note that in a generic cubic-symmetric RAM, one shouldNote, however, that the critical exponent controlling the
also consider perturbations proportionalzip We use again leading scaling corrections differs from the one for the
Eq. (33). However, in the presence of cubic symmetry, T REIM, which isA,~0.25[20,21. In the RCAM the leading
[cf. Eq(32)] is not an irreducible tensor. One must considerscaling correction is due to the Hamiltonian terms propor-
separately/,; = T,.; and T,,; with a# b, which have differ-  tional to uy andv,. They cause slowly decaying corrections
ent RG dimensiony, andy;. Therefore, the term propor- Of ordert* with
tional to z, is the sum of three terms of RG dimensions -
2ye—-3=alv, 2y,-3, and ¥;—3. The last one is the largest, A=-0ar=00499). (35)
so thaty,=2y;—3. Using the results of Appendix A fdvl If P(q)=I1,P,(qy, i.e., the probability distributions of the
=3, we findy,=0.6004). The exponeny, is larger thary,.  variablesq, are independent, the stability of the REIM FP

whereT,,; and&; are defined in Eq.32). The first term is the
most relevant one and therefore we obtgjx2y;—3 and
alsoy,=vy,.

Let us note that the relatively small value ¢f makes the
measurement oth, from the critical-temperature shift for
small random anisotropy rather difficult. Indeed, in E8Q)
the termD3/’0 is suppressed with respect to the first two
analytic terms proportional t®3 and D§, since 2kpp~4.9
(2/¢pp=5.6) for M=3 (M=2). This explains the results of
Ref. [4] which measuredT, in crystalline Laves-phase
(DyyY1-0Al, for different values ofx. SinceDy—0 asx
—1 [30], they were able to measurkT.(D,) for Dy— 0.
The experimental results were fitted assumiad (Do)
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such a Hamiltonian corresponds k6 random-exchange* Pxa=
models coupled by the term proportionaltg Such a term

has the form=,£.5, whereSa:(l/N)(,cf1 is the energy of Then, the average value of a quaniiys, ,) is given by
the REIM. Therefore, this perturbation has RG dimension —

2/v,—3=a,/ v, which is negative. Thus, the coupling among (0) =[{O(pyaTxa)) olp: (39

the models is irrelevant, and thus it does not change thghere[.], indicates the average over the disorder variables

universality class of the system. F(q) dqes not factorize, py.. and(-), indicates the sample average with Hamiltonian
the M ¢* models are also coupled by disorder. The above-

reported analysis shows that also this coupling is irrelevant, H==02 2 0a0yaPralya- (40)
its RG dimension beingy /v, <0. a &y 7
As discussed in Sec. Il, in the case of a generic rando

can also be proved by starting directly from E20). Indeed, 1 if oya> 0yp foreveryb # a,
0 otherwise.

cubic-symmetric distributioP(0i), the Hamiltonian14) also nl]f O depends only on a smglg component of the spins, say it
depends only ors, ;, we can integrate outy , and py , for

contains the term proportional . It is important to note e S
that the REIM FP is unstable with respect to this perturba—aZZ' Thus, the Hamiltonian becomes a REIM Hamiltonian

tion, since its RG dimensiow, is positive at the REIM FP. with disorder p,,,. Now, we use t.he symmetry d¥(q) to
The dimension of this perturbatiog,, can be computed by c;anclude that the'prolbablllty tha&l is 1 must be |n(jepre]ndent
rewriting the term proportional ta, as 8 1aWiSt,;]nce2apa IS always equa Jf’ L we obtain _t_ﬁh
= probability 1M and p,,=0 with probability 1
_ —1/M. Therefore, we obtain that correlation functionsspf
a%j PaiPoiPajboj ‘% z Taij Toij + % zuaiubi * N% Ealbs are exactly equal to the correlation functions of the site-
diluted Ising model with vacancy density-1/M. Note that
(36) this result is not true for correlation functions that involve
different components of the spins. Indeed, the Hamiltonian
. . (40) corresponds tovl REIMs, but they are coupled by the
the sum of three terms that have RG dlmen'5|oy$—2, . disorder variables. Thus, these correlation functions are not
2yy=3, E_’md Ye—3. Using the results repo_rted m_Appendlx simply obtained by multiplying REIM correlation functions.
A, one finds that the most relevant term is the first one, S%hese considerations allow us to predict the behavior of the
that model (5) for Dy— +%. Since the REIM has a continuous
transition for spin density>p., p.=0.311608 113) on a
cubic lattice[33], we predict that the model has a continuous
transition forM=2 andM =3 and no transition at all folM

where T, = ¢4b,j With i # . Therefore, this perturbation is

Y,=2yr—3. (37)

Using the estimatg;=2.083) reported in Appendix A, one

; =4,
obtains Let us now consider the opposite cadg— —«. If the
- —y = distribution P(q) is such that there is only one directidn
=1.166), ¢,=y,»=0.794), 38 1 . . .
Yz €6). ¢. =Yz @ (38) such thaig,=min, q,, the previous argument applies with no
where ¢, is the corresponding crossover exponent. changes. Note that the distributi¢®) does not satisfy this

condition forM=3. Indeed, in the limiDy— —~ the spins

are constrained to be orthogonaldocand therefore cannot be

considered as Ising variables. In this particular case, the be-
In this section, we wish to investigate the general modehavior at the transition, if it exists, is not predicted by this

(5) in the limit of infinite disorder, showing that, under some argument.

mild hypotheses for the probability distributi®{q), one has

D. Critical behavior for infinitely strong random anisotropy

REIM critical behavior forM =2 andM =3 and no transition IV. RENORMALIZATION-GROUP ELOW IN THE
for M=4. This analysis further confirms the results of Sec. QUARTIC-COUPLING SPACE
I C.
We first consider the cad®,— +. We suppose that the A. The fixed-dimension five-loop expansion
distribution P(q) is such that there is only one directidn In this section we study the RG flow of the theas),

such thatg=max, g (or at least that this condition is satis- determining the stable FP's and their attraction domain. For
fied ywth probab|_l|ty 1. This is the case |f the dlstrlbu_tlon IS this purpose, we determine the five-loop perturbative expan-
continuous and is also true for the distributiBtqg) derived  sion of the 8 functions in terms of appropriately defined
from Eq.(2) (note thaig,=uZ). Because of the assumption on zero-momentum quartic couplings at fixed dimension. In the
P(q), for Dy— + the spinsis constrained to lie along tHe  present case we defing v, w, andy by writing

direction, i.e.,.5,=*1, s,=0 for a# k. Thus, in this limit we 16

can rewrite the Hamiltonian in the following way. At each r'“. . (©)=m 2207 u A+ RyBai:

site we defineM Ising variabless, , and M disorder vari- aivjoke(0) = MZ 3 (U RunAaivjckal Maibjckd
ablespy 5. The Ising variables assume values +1, while the + R o
disorder variables assume values 0 and 1 with probabilities W RiCaivjckai + Y Daibjokal): (43
induced by the distribution ofj: where R¢=9/(8+K), and A, B, C, and D are appropriate

036104-7



CALABRESE, PELISSETTO, AND VICARI PHYSICAL REVIEW E70, 036104(2004

tensors defined so that at the tree lewgEmu Ry, vg trajectories for Whichgi()\=oc,s)=gf. We recall that the
=mv Ry, Wo=mw R, and yo=my. The massm and the O(M) FP is located on the axis atv* ~1.40,1.40 forM

renormalization constard, are defined by =2,3 respectively[39,4Q; the Q0) FP lies in theu axis at
u* =1.39(Refs.[39,40Q); the REIM FP lies in thev-y plane

) - 72 4+ 02 4
Taioj(P) = GadZs [+ p=+ O(p) ]. (42) at w* =-0.7 and y* =2.3 (we report here the field-
HereI'® andI'® are the four- and two-point one-particle theoretical estimates of ReR4]; Monte Carlo estimates are
irreducible correlation functions. given in Ref.[19]).
We computed thes functions to five loops. This required
the calculation of 161 Feynman diagrams. We employed a C. Results

symbolic manipulation program, which generated the dia- ] . i
grams and computed the symmetry and group factors of each N this section we report our analyses of the five-loop
of them. We used the numerical results compiled in [R&f] ~ Perturbative series. We have resummed ghéunctions by
for the integrals associated with each diagram. The five-loop'Sing the Padé-Borel method. The major numerical problem
series of theg functionsp,, B,, B., andB, for the physically ~We faced was the fact that most of the approximants were
interesting caseN=0 andM =2, 3 arereported in Ref[35],  defective in some region of the coupling space, forbidding a
with a discussion of their checks. At two loops the seriescOmplete study of the RG flow. This is not unexpected since
agree with the expansions reported in Réf7]. The series the perturbative series are not Borel summable. Approximant
for generic values oN andM are available on request. [3/1] for B, [4/1] for B,, and[3/2] for B, with b=1 [41]
Perturbative series are divergent and thus a careful analyvere not defective in all the region of the RG flow we con-
sis is needed in order to obtain quantitative predictions. Irfidered(in some cases the Padé approximant to the Borel
the case of systems without randomness, they are Conjeyansform had a pole on the positive real axis but far from the
tured to be Borel summable and this allows one to use th€rigin, in a region that gives a negligible contribution to the
Padé-Borel method or methods based on a conformal magesummed function On the other hand, all approximants for
pmg [36]. In random systems, the perturbative approachﬂy We_re defective somewhere in t_he region vv_e wished to
faces additional difficulties: the perturbative series are exinvestigate. Forg, we used approximarit3/2] with b=1,
pected not to be Borel summalj&7,38. Nonetheless, in the that had the least extended defective region. All results we
REIM case quite reasonable estimates of the critical expoPresent here were obtained by using these approximants. It
nents have been obtained by using the fixed-dimension exiust be stressed that other choices gave results that were
pansion ind=3 (see, e.g., Ref$§25,31)). Similarly, the usual ~ Similar in the regions in which they were well defined.
resummation methods applied to the RCAM expansions give First, we checked the general results reported in Sec. Ill.
quite stable results, at least when the quartic couplings aré/e considered the M), cubic, Q0), and REIM FP’s and
not too large, giving us confidence on the correctness of théor each of them we determined the stability eigenvalues.
conclusions. The results are in full agreement with the conclusions of Sec.
[, confirming that the @0) and the REIM FP’s are stable.
] ) Then, we looked for additional FP’s in addition to those
B. The RG trajectories identified by thee-expansion analysis of Sec. Il A. For this
The knowledge of thgs functions allows us to study the purpose we considered the RG flow starting from arbitrary
RG flow in the space of the quartic renormalized couplingsvalues ofu,v,w,y. We only observed runaway trajectories
u, v, w, andy. For this purpose we follow closely RgR1].  or a flow toward either the REIM or the(Q) FP’s, confirm-
The RG trajectories are lines starting from the Gaussian Fihg that the REIM and the ) are the only stable FP’s. In
(located atu=v=w=y=0) along which the quartic Hamil- particular, trajectories corresponding to Hamiltonian param-
tonian parameters,, vo, Wo, andy, are kept fixed. The RG eterswy<0, Uy>0, ug+wy<<0, and that satisfy the stability
curves in the coupling space depend on three independehound(28) never flow toward the @) FP, which is therefore
ratios of the quartic couplings. The RG trajectories can benot accessible from this region. They either flow toward the

determined by solving the differential equations REIM FP or apparently run away toward infinity.
For the purpose of illustration, we first consider the case
_ }\% =B, (43) ¥0=0, Wo/Up=-M, andvy>0, which apparently corresponds
an Y to the model6) with distribution(2) [cf. Eq.(18)]; note that

B=1/M in this case. In Fig. 1 we show the RG trajectories

where g;=u,v,w.y, andx € (0,%2), with the initial condi- ¢, \1— 3¢ several values af,>0. The approximant 0B,

tions is defective for 0.05:5,=<0.3 andy close to 1. This explains
dg; the sudden change of direction of the trajectory wath
gi(0)=0, nl = (44)  =0.3in Fig. 1 whery is close to 1. FoM=3 (M=2) the RG
\=0

trajectories appear to approach the REIM FP forx<)
wheres; =s,=Uy/|vg|, S3=Sw=Wo/|vq|, S4=S,=Yo/|vg|, and  <0.9 (0<s,<1.4). For larger values of;, the flow runs
$,=+1ifvg>0,s,=-1 if vg<0. The functiongy;(\,s) pro-  close to regions in which some approximant is defective. The
vide the RG trajectories in the renormalized-coupling spacetrajectories appear to flow toward infinity, but this could be
The attraction domain of a F@ is given by the values afj, an artifact of the resummation. In any case, if true, this
vo, Wo, andy, corresponding to trajectories endinggati.e.  would imply that the corresponding systems do not undergo
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FIG. 1. Projections of the RG flow
for the three-component caskl=3, in
the y-w, y-v, andy-u planes, as a func-
tion of s,=ug/vg, for ug>0, vy>0, and
Wy<0. Hereyy,=0 and 3ip+wp=0. The
REIM FP corresponds tai*=v*=0,
w* ==-0.7, andy* ~2.3 (Ref. [24]).

a continuous transition. As a consequence, sjjéedirectly =w=0 andM=1 (the corresponding six-loop series are re-
related to the anisotropy strendih the continuous transition ported in Ref[27]). These identities are proved in Appendix
would be expected to disappear for sufficiently large value®. They show that the flow for the couplings-w andy is
of D. These conclusions do not immediately apply to fixed-identical to the flow observed in the random-excharde
length spin systems, i.e., to the Hamiltonidn since in this  theory. Therefore, fouy+w,=0 we observe pure Ising be-
casevo=+ [42]. Thus, it is not clear which is the correct hayior, while for uy+wy<0 (Uy+wo>0) RG trajectories
value ofs, even _foruO:oc. The critical behavio_r of this sys-  flow toward the REIM[O(0)] FP. Therefore, ifvg/uy<-1,
tem for strong Q|sorQer has been d|scussed.|n Sec. ID.  4¢ implied by Eq(22), only REIM critical behavior can be
The qualitative picture does not change if we do not ré-spserved. Fomwy>0, similar conclusions are obtained nu-
quire Wo/Uo=-M ands,=0. For instance, we can consider merically: The attraction domain of the(@ FP is included

the casany/up=-M, vo>0, and arbitrans,. We are able to regionwy/ uy> —c, where the constantis positive and

resum reliably the perturbative series &r>-0.7 and there e
we observe that some trajectories flow toward the REIM Fszjlz)er than 1, depends sp, and tends to 1 &§,——, i.e.
O .

while others run away to infinity. The attraction domain of . L . "
the REIM FP enlarges with increasisg it is approximately In conclusion, our_anaIyS|s gives a full picture of the criti-
bounded bys,<0.9+0.6, for M=3 (5,<1.4+1.4, for M cal behavior for cubic magnets that havg>0—we have

=2) in the region -0.6s5,<0.3 (-0.7<s,=<1). For larger ~ Vo=+% for fixed-length sping42]. ForM =2 the pure system
value ofs,, the attraction domain becomes even larger and1as a criticalXy transition fors,>-2/3, an Ising transition
extends beyond the lines reported above. §er-0.6 some  for §,=-2/3, and a first-order transition for <1s,<-2/3
approximants become defective and we cannot reliably defvalues of the parameters such tisa&s -1 are not allowed
termine the RG flow. As in the casg=0, there is some Since they do not satisfy the stability bou(2B)]. Note that
evidence that trajectories flow toward infinity fej=<-1, first-order transitions cannot be observed in the pure model
while for -1=s,=<-0.6 they may still flow to the REIM FP. (15 with fixed-length spins. Indeed, for the strongest pos-
Then we investigated the behavior fog<<0, although sible negative anisotropyK=-o, the Hamiltonian can be
this region does not appear to be of physical interest. As invritten as two decoupled Ising mode43], and thus the
the pure case, all trajectories apparently run away to infinitysystem withK=-% exactly corresponds tg,=-2/3. As a
Finally, let us discuss whether(Q) critical behavior can  consequence, finite valueskfhaves,>-2/3, and therefore
be observed by appropriately tuning the model parametershe model is expected to always haveXitransition. Ran-
We have investigated this question in detail. We find that thelomness changes the critical behavior. For small randomness
O(0) FP can be reached onlyuf+wy> 0, irrespective of the and small anisotropy, we always predict REIM critical be-
other parameters as long @&gs> 0 andwy < 0. This result can  havior, while for large disordefunless we consider fixed-
be proved straightforwardly in the limiting casg=0. In-  length spins; cf. Sec. Il Dwe do not expect a continuous
deed, since3,=0 for v=0, if we start withvy=0 the flow  transition. Note that the behavior of systems with<4,<
will be confined in the hyperplane=0. But forv=0 we can  -2/3 remains unclear since in this region we are not able to
use the identities resum reliably the perturbative expansions. In particular, we
- cannot clarify if softening occurs. A Monte Carlo simulation
BulU,0.W.Y) + BulU, 0.0, Y) = Brena (U + Ws), [44] found that model(15) with K=-» has a continuous
By(U,0,W,y) = Breim,y(U+W,Y), (45)

transition for small disorder, in agreement with our results.

For M=3 we expect a continuous transition &=0 and
holding for N=0, where Bggm u(U,Y) and Bremy(u,y) are  a first-order one fos,<0. If we add randomness to systems
the B functions of the REIM model obtained by setting  with ,>0, the continuous transition survives but now be-
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Iongs_ to the REIM universality class; for large disorder the F(UZ)(O)LKI :zalgi’kl, F'(I'Z)(O)ij,kl = Z?lAij,kh (A5)
transition may disappear. Fej<0 one may observe soften- _

ing, i.e., the first-order transition may be changed into a conwhere B and A are appropriate constant tensors such that
tinuous one by small disorder. Note that softening alwayu=Zr=1 at the tree level. Then we compute the RG func-
occurs for infinite disordel)y=+, in the model(5), inde- ~ tions 77y and »r defined by

pendently of the sign oy, under mild assumptions on the
distribution P(q); see Sec. Il D.

alnZ,t __dIn ZU'T+/5’ adinZ,t

wv)= ——— = ,
77U,T( ) glnm . u au v v
0“0
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APPENDIX A: RENORMALIZATION-GROUP

DIMENSIONS OF BILINEAR OPERATORS IN THE CUBIC- nu(u,v) =- 2u - }v + U2 12+ ZNZ + 4 uv + 3,)2
SYMMETRIC ®* THEORY 8+N 3 3(8+N)* 3(N+8) 27
In this appendix we compute the RG dimensions of bilin- + E ejuv’, (AT)
ear operators in the cubic-symmetric theory !
1 1 1 __2u S 12+ N 4 T
”f B QLup 0T+ Sret®+ e ) == g N s e e oy U AU
N (A8)
+ 203 @0* (A -
41 Oizl @i ' whereu andv are normalized so that
. . . 8+M 3
wherep is anN-component field. The bilinear operators can mu= ——2Z,Up, Mo = ——2Z,v0, Zy, =1 +0(u,v),
be written in terms of tensors belonging to different irreduc- A8 16w '
ible representations of the cubic group: (A9)

1 5 and the CoefficienthjJ an eﬁ are reported in Tables Il and I,
E= NE @i, (A2)  respectively. Note that andv correspond tar andv in Ref.
K [27]. The RG dimensiony, and y; are obtained by 1
=2+mny -1, wherey 1 is the value obtained by resumming
1 the corresponding series, evaluating itiatu*, v=v*, where
U=’ NE ok, (A3)  (u*,v*), is the stable FP.
k In the case of the REIM, i.e., in the limN— 0, one has
yu=Ye=1/v. Indeed(¢*o )P and(S;pZee) ' are both
Ti= oo i #]. (A4) 1;\i|nite0and nonvanishing foN— 0. Therefore, we have for
—
The RG dimension of the energy operatéris yg=1/v, 1Pl
. . . 1PI — 2 — 1PI
where v is the correlation-length exponent. The RG dimen- (NUjgup)™"' = —<2 @i qu<P|> +O(N) = = (NEg¢))
sions of the operators; and T;;, respectivelyy, andyr, in i
the cubic-symmetric theoryAl) will be computed below. +O(N). (A10)
Note that in @N)-symmetric theories the tensdds and Tj;
belong to the same irreducible representation and therefordsing the Monte Carlo estimate=0.6833) (Ref. [19]), we
yr=Yu. In cubic systems this is no longer the case. obtainy,=1.4646). The series forpr was already reported
In order to computgy, andyy, we consider the perturba- in Ref.[45]. Its analysis provided the estimage=2.083).
tive approach in terms of the zero-momentum quartic cou- For N=2 the stable FP of the cubic theory is th€pFP,
plingsu andv at fixed dimension. We refer the reader to Ref.soy,=yr=1.7683) [26]. For N=3 the QN) FP is unstable
[27] for notation and definitions; there one can also find theand the RG trajectories flow toward another FP characterized
six-loop perturbative expansion of tigefunctions and of the by a discrete cubic symmetry. The analysis of the series,
RG functions associated with the standard exponents. In ousing the same procedure reported in Réf7], gives the
der to compute the RG dimensionsléfandT;;, we consider  estimates
the related RG functionZ, and Zy, defined in terms of the

zero-momentum one-particle irreducible two-point functions Yu(N=23)=1.7747), y{(N=3)=1.8002), (All)
Fff)(O) and F(TZ)(O) with the insertion of the operatdy; and
T;j, respectively, i.e.; yu(N=4)=1.6968), y;(N=4)=1.8743). (Al2)
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TABLE Il. The coeﬂicientsehJ [cf. Eq. (AT)].

PHYSICAL REVIEW E 70, 036104(2004

TABLE lll. The coefficientse} [cf. Eq. (A8)].

i (N+8)'e)/ i (N+8)'e]

3,0 -18.3128-3.4332R1+0.216746N? 2,0 -18.3128-3.4332R1+0.216746N?

2.1 -9.15642-0.1702K 1,1 -3.09273+0.21674K

1,2 -1.17334 0,2 -0.0337239

0,3 -0.0443103 3,0 140.799+37.5738+1.03627N%+0.0943426\3

4,0 140.799+37.573M+1.03627N%+0.0943426N3 2,1 39.0459+1.5379K+0.12579N?

3,1 93.8662+5.5259K - 0.0781363\2 1,2 2.66843+0.0769829

2,2 18.4511-0.066789M 0,3 0.0716893

1,3 1.40677 4,0 -1340.07-416.71K-17.6226N%+0.911281N?

0,4 0.0395196 +0.0508337™N*

5,0 -1340.07-416.71R-17.6226N?+0.91128IN3 3.1 -497.159-32.4258+1.57919N*+0.0847229N°
+0.0508337N* 2,2 -53.6464+0.443228+0.062623N\2

4.1 -1116.73-98.684M+1.52723N?-0.0301952N° 1,3 -2.39176+0.0256724

3,2 -298.289-2.5476B— 0.0492195\? 0,4 -0.0421612

2,3 -35.2065+0.14050R 5,0 15651.3+5665.6Bl+433.687N%+1.06755N3

1,4 -1.98589 +0.679106N*+0.031393N°

05 —0.0444004 41 7460.04+849.88B1+0.972279N%+1.37677N®

6,0 15651.3+5665.65+433.687N2+1.06755N3 +0.062786N*

+0.679106N*+0.031393N\° 3,2 1175.99+25.2718+1.12305N?+0.0567755\3

51 15651.3+1935.6B/+8.74297N2+0.581411IN3 23 88.2226+0.604281+0.0297911IN
-0.00927903\* 1,4 3.53359+0.013687M

4,2 5294.38+134.778/-1.13059N?-0.038664N° 0,5 0.0607723

3,3 848.418-2.5110BI+0.0323227N\?

2,4 72.4799-0.31834R

15 3.24291 fieId; anq n/2'open lines of¢ fields conngcted b_y the

0.6 0.0603632 auxiliary-field lines. The group factor associated with each

APPENDIX B: SOME RENORMALIZATION-GROUP
IDENTITIES

In this appendix we prove relationg5). Morever, we

diagram is computed as follows. One assigns indéids ¢

and o propagators and indicesto p propagators, considers

the product of the factorg (reported belowassociated with

each vertex, and sums over all assigned indices. In order to
prove theM independence we will show that, because of the
Kroneckerd's appearing in the diagrams, none of these sums

show that, in the [imitN— 0, the RG functions do not de- is effectively performed in the limiN— 0, so that no factor
of M can appear. The factoké are given by

pend onM for v=0.
Let us consider the Hamiltonian fop=0 and rewrite

1
exp[— 2 > (U + Wobap + YOﬁab‘Sij)d’gid’gji| ~ J didp.do
'ij,ab

1 1 —
X exp[—()\z + 2 p2+ Y ggi) + == (Vuph
2 a ai 2\V3 i

V

— —
+ \Wop, + \yOUai)¢§i] , (B1)

wherea(i) runs from 1 toM(N) andX, p,, ando,; are aux-
iliary fields. Then let us consider theepoint irreducible cor-
relation function. We will show that it has the form

(ayi, " bai) = 2 C QT b, (B2)

whereQ,, are group tensorgroducts of Kroneckes func-

runs over all possible independent group tensors. In terms @fne obtains a factor df. As a consequence, all loops give

the auxiliary fields, Feynman diagrams contain loopsgpof rise to a very simple effective vertex for the auxiliary fields:
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v’u:
VN, bais o) = _/§5ab5|j :

A}

|

\YWp

V(pe: Pais d’bj) = Oabclij »

oﬂ‘

v

—
VY
V(o Pair ) = \Té)@abc@.jk, (B3)

where abdijk) run from 1 to M(N). First, note that all¢
loops must contain at leasteap¢ vertex, otherwise by sum-
tions), the scalar factors, do not depend oM, and the sum ming over the indices of the fields appearing in the loop



CALABRESE, PELISSETTO, AND VICARI PHYSICAL REVIEW E70, 036104(2004

N APa Pa Opi * Tp i V™~ Onvabrnpy O s by summing over the indices associated with thend o
< Pay " Py " O]~ Oa-ay b y-i p)r/opagatorsg,J one obtains expressions in which t:ﬂl remaining
(B4) indices(those related t@ propagatorsare equal to external
ones and are not summed over. We have thus proved that
where we have written only the dependence on the grouporrelation functions expressed in terms of the bare param-
indices. Then, given a diagram, let us consider the reduceeters do not depend dd. SinceRy, is M independent for
diagram in which allkp loops are replaced by the correspond-N— 0, this result extends trivially to the RG functions ex-
ing effective vertices. The,; propagators form several con- pressed in terms of the renormalized couplings.
nected paths. It is easy to convince oneself that each of these To prove the identitie$45) we now exploit theM inde-
paths must end at an opeh line; otherwise, by summing pendence. FoM=1 the theory corresponds to the REIM
over the indiced associated with ther lines, one obtains model with couplingsug+wgy andy,. SinceRyn=Ry for N
factors of N. As a consequence, all effective vertices are—0, (u+v)/m is a function ofuy+w,. The result follows
connected by propagators to the opeg lines. Therefore, immediately.
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