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We study the critical behavior of a general class of cubic-symmetric spin systems in which disorder pre-
serves the reflection symmetrysa→−sa, sb→sb for bÞa. This includes spin models in the presence of random
cubic-symmetric anisotropy with probability distribution vanishing outside the lattice axes. Using nonpertur-
bative arguments we show the existence of a stable fixed point corresponding to the random-exchange Ising
universality class. The field-theoretical renormalization-group flow is investigated in the framework of a
fixed-dimension expansion in powers of appropriate quartic couplings, computing the correspondingb func-
tions to five loops. This analysis shows that the random Ising fixed point is the only stable fixed point that is
accessible from the relevant parameter region. Therefore, if the system undergoes a continuous transition, it
belongs to the random-exchange Ising universality class. The approach to the asymptotic critical behavior is
controlled by scaling corrections with exponentD=−ar, wherear .−0.05 is the specific-heat exponent of the
random-exchange Ising model.
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I. INTRODUCTION AND SUMMARY

The critical behavior of magnetic systems in the presence
of quenched disorder has been the subject of extensive the-
oretical and experimental study. An important class of sys-
tems is formed by amorphous alloys of rare earths with as-
pherical electron distribution and transition metals, for
instance TbFe2 and YFe2. These systems are modeled[1,2]
by the Heisenberg model with random uniaxial single-site
anisotropy, or, in short, by the random-anisotropy model
(RAM)

HRAM = − Jo
kxyl

sWx ·sWy − D0o
x

suWx ·sWxd2, s1d

wheresWx is anM-component spin variable,uWx is a unit vector
describing the local(spatially uncorrelated) random aniso-
tropy, andD0 is the anisotropy strength. In amorphous alloys
the distribution ofuWx is usually taken to be isotropic, since in
the absence of crystalline order there is no preferred direc-
tion. On the other hand, in polycrystalline materials, for in-
stance in the Laves-phase intermetallicsDyxY1−xdAl2 com-
pounds studied in Refs.[3,4], the distribution of uWx is
expected to have only the lattice symmetry.

The critical behavior, and in particular the nature of the
low-temperature phase, of a generic system with random an-
isotropy depends on the probability distribution of the ran-
dom vectoruWx. In the isotropic case, i.e., when the probabil-
ity distribution is uniformly weighted over the
sM −1d-dimensional sphere, the Imry-Ma argument[5,6] for-
bids the appearance of a low-temperature phase with nonva-

nishing magnetization ford,4. This still allows the pres-
ence of a finite-temperature transition with a low-
temperature phase in which correlation functions decay
algebraically, as happens in the two-dimensionalXY model.
Such behavior has been predicted for the RAM with isotro-
pic distribution in Ref.[7] and it has been recently supported
by a 4−e study [8,9] using the functional renormalization
group (RG) [10]. On the other hand, standard field-
theoretical perturbative approaches do not find any evidence
for a critical behavior with long-range correlations[11–14].
While experiments have not yet found evidence of low-
temperature quasi-long-range order, numerical simulations
seem to confirm the picture of Refs.[7–9], but are still con-
tradictory as far as universality and behavior in the strong-
anisotropy regime are concerned[15,16]. For these reasons,
the critical behavior of the RAM can still be considered as an
open problem.

The above arguments do not apply to spin models with
the discrete anisotropic distribution introduced in Ref.[11],
in which the vectoruWx points only along one of theM lattice
axes, i.e., it has the probability distribution

PcsuWd =
1

2M
o
a=1

M

fdsMdsuW − x̂ad + dsMdsuW + x̂adg, s2d

wherex̂a is a unit vector that points in the positivea direc-
tion. This model, which we shall call the random cubic an-
isotropic model (RCAM), should have a standard order-
disorder transition: The random discrete cubic anisotropy
should stabilize a low-temperature phase with long-range
ferromagnetic order. On the basis of two-loop calculations in
field-theoretical frameworks, it has been argued[17,18] that
the transition belongs to the universality class of the random-
exchange Ising model(REIM) for any numberM of compo-
nents.
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In this paper we study the critical properties of the three-
dimensional RCAM. We consider the field-theoretical ap-
proach based on the Landau-Ginzburg-Wilsonw4 Hamil-
tonian [11]

HLGW =E ddxHo
i,a

1

2
fs]mfaid2 + rfai

2 g +
1

4! oi jab

su0 + v0di j

+ w0dab + y0di jdabdfai
2 fbj

2 J , s3d

where a,b=1, . . . ,M and i , j =1, . . . ,N. In the limit N→0
the Hamiltonian(3) is expected to describe the critical be-
havior of the RCAM forM-component spins. Using nonper-
turbative arguments, we show that the field theory with
Hamiltonian (3) has two stable fixed points(FP’s). One of
them belongs to the REIM universality class while the other
corresponds to the OsNd model in the limitN→0, the so-
called self-avoiding-walk universality class. Then we inves-
tigate the RG flow for the model with Hamiltonian(3) in the
framework of a fixed-dimension expansion in powers of ap-
propriate zero-momentum quartic couplings. We compute the
corresponding Callan-Symanzikb functions to five loops.
Their analysis shows that the only accessible stable FP from
the region of parameters relevant for the RCAM is the REIM
FP. This implies that the critical behavior of the RCAM
(when the parameters allow a continuous transition) belongs
to the REIM universality class, whose critical exponents are
nr =0.683s3d, ar =−0.049s9d, hr =0.035s2d, etc.[19]. The ap-
proach to the REIM scaling behavior is characterized by very
slowly decaying scaling corrections proportional totD with
D=−ar <0.05, which is much smaller than the scaling-
correction exponent of the REIM, which isDr <0.25[20,21].
Our results fully confirm and put on a firmer ground the
conclusions of Refs.[17,18] based on two-loop perturbative
calculations.

It is important to note that our results are specific to dis-
tributions that vanish everywhere outside the lattice axes,
such as the one given in Eq.(2). Indeed, generic cubic-
symmetric distributionsPsuWd, and in particular the isotropic
one, give rise to an additional quartic term that should be
added to the effective Hamiltonian(3), i.e,

z0o
i jab

faifbifajfbj. s4d

The REIM FP is unstable with respect to this perturbation.
We shall evaluate the corresponding crossover exponent,
finding fz=0.79s4d. Therefore, even small differences from
the discrete distributionPcsuWd cause a crossover to a different
critical behavior. Nonetheless, whenPcsuWd turns out to be a
good effective approximation—this might be the case in
some crystalline cubic-symmetric random-anisotropy
systems—REIM critical behavior may be observed in a
preasymptotic region.

The general Landau-Ginzburg-Wilson Hamiltonian(3)
can also be recovered by considering systems with cubic
anisotropy such that disorder preserves the symmetrysx,a
→−sx,a, sx,b→sx,b, bÞa. A general Hamiltonian with this
property is given by

H = − Jo
kxyl

sWx ·sWy − Ko
x

o
a

sx,a
4 − D0o

x
o
a

qx,asx,a
2 , s5d

where sx
2=1 and qWx is a random vector with a probability

distribution that is invariant under the interchangeqa↔qb.
The exact reflection symmetry at fixed disorder—this sym-
metry is not present in generic models of type(1)—is the key
property that allows the RCAM and the more general class
of models (5) to have a standard order-disorder transition
with a low-temperature magnetized phase.

The paper is organized as follows. In Sec. II we apply the
replica method to thew4 theory corresponding to models(1)
and(5), determining the correspondingf4 Hamiltonians that
are the basis of the field-theoretical approach. In Sec. III we
discuss some general properties of the theory(3). In particu-
lar, we discuss the crossover behavior when randomness is
weak, and we prove that the REIM FP is stable by evaluating
its stability eigenvalues. In Sec. IV we investigate the RG
flow by computing and analyzing the five-loop fixed-
dimension expansion of theb functions associated with the
zero-momentum quartic couplings. In Appendix A we report
a six-loop calculation of the RG dimensions of the bilinear
operators in cubic-symmetric models that are used in the
discussion of the stability of the FP’s. Appendix B reports the
proof of some identities used in the paper.

II. EFFECTIVE F4 HAMILTONIANS

The mapping of the RAM Hamiltonian(1) to an effective
translationally invariantf4 Hamiltonian was originally dis-
cussed in Ref.[11]. In order to replace fixed-length spins
with unconstrained variables, one performs a Hubbard-
Stratonovich transformation. Then, for the purpose of study-
ing the critical behavior one considers the continuum limit of
the resulting Hamiltonian and truncates its potential to fourth
order. This leads to an effective continuumw4 Hamiltonian
for an M-component real fieldwa,

Hw4 =E ddxF1

2
s]mwW d2 +

1

2
rwW 2 − DsuW · wW d2 +

1

4!
v0swW 2d2G ,

s6d

where uWx is an external spatially uncorrelated vector field
with parity-symmetric distributionPsuWd and D is propor-
tional to D0. We relax here the conditionuWx

2=1 and require
only thatkuWx

2l=1, thereby fixing the normalization ofD. Us-
ing the standard replica trick it is possible to replace the
quenched average with an annealed one. The system is re-
placed byN noninteracting copies with annealed disorder.
Then, by integrating over disorder, one obtains the following
effective Hamiltonian:

Hrepl =E ddxFo
i,a

1

2
s]mfaid2 +

1

2
ro

ia

fai
2 +

1

4!
v0o

i jab

di jfai
2 fbj

2

+ RsfdG , s7d

wherea,b=1, . . . ,M, i , j =1, . . . ,N, and
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Rsfd = − lnE dNuPsuWdexpSDo
iab

uaubfaifbiD . s8d

In the limit N→0 the Hamiltonian(7) is equivalent to the
Hamiltonian (6) with quenched disorder. The expansion in
powers of the fieldf can be expressed in terms of the mo-
ments of the distributionPsuWd,

Ma1a2. . .ak
;E dNuPsuWdua1

ua2
. . .uak

. s9d

One obtains

Hrepl =E ddxF1

2o
ia

s]mfa,id2 +
1

2
ro

ia

fa,i
2 +

1

4!
v0o

iab

fai
2 fbi

2

− Do
iab

Mabfaifbi +
1

2
D2So

iab

MabfaifbiD2

−
1

2
D2 o

i jabcd

Mabcdfaifbifcjfdj + Osf6dG . s10d

Let us consider the case in which all field components be-
come critical atTc. This is achieved if the distributionPsuWd is
such that

Mab =
1

M
dab. s11d

This condition is satisfied ifPsud is cubic symmetric. Under
this further assumption, the fourth momentMabcd can be
written as

Mabcd= Asdabdcd + dacdbd + daddbcd + Bdabcd, s12d

whereA andB are parameters depending on the distribution;
they satisfy the Cauchy inequalitiesAsM +2d+Bù1/M and
3A+Bù1/M2. It follows that

Hrepl =E ddxF1

2o
ia

s]mfaid2 +
1

2
sr − D/Mdo

ia

fai
2

+
1

4!
v0o

iab

fai
2 fbi

2 +
D2

2M2s1 − M2AdSo
ia

fai
2 D2

− AD2o
i jab

faifbifajfbj −
BD2

2 o
i ja

fai
2 faj

2 + Osf6dG .

s13d

In conclusion, for generic cubic-symmetric distributions
PsuWd the Hamiltonian that should describe the critical behav-
ior of the corresponding RAM is

H =E ddxH1

2o
ia

s]mfaid2 +
1

2
ro

ia

fai
2 +

1

4! oi jab

fsu0 + v0di j

+ w0dab + y0di jdabdfai
2 fbj

2 + z0faifbifajfbjgJ , s14d

where the term proportional toy0 has been added because it
is generated by RG iterations wheneverw0Þ0. It should be
noticed that such a term arises naturally if one considers that,

if the system is only cubic symmetric, quartic single-ion
terms must be included. In this case it is natural to consider

H = − Jo
kxyl

sWx ·sWy − D0o
x

suWx ·sWxd2 + Ko
x

o
a

sx,a
4 , s15d

and the correspondingw4 Hamiltonian

H =E ddxF1

2
s]mwW d2 +

1

2
rwW 2 − DsuW · wW d2 +

1

4!
v0swW 2d2

+
1

4!
y0o

a

wa
4G . s16d

The Hamiltonian(14) was originally introduced in Ref.[12]
to describe magnetic systems with single-ion anisotropy and
nonmagnetic impurities.

There are two interesting particular cases. First, one may
consider an OsMd-invariant pure system coupled to an iso-
tropic distribution Psud. In this caseK=0 in Eq. (15)—
therefore,y0=0—andB=0 in Eq. (12), so thatw0=0. These
conditions are preserved under renormalization by the pres-
ence of the OsMd invariance. Note that this is not the case if
KÞ0, i.e., if y0Þ0. Distributions such thatB=0 (these dis-
tributions are not necessarily isotropic) give apparentlyw0
=0; however, such a condition is not preserved under renor-
malization if z0Þ0.

A second interesting case corresponds to distributions
Psud such thatA=0 in Eq. (12). It is easy to show that
distributionsPsud with this property are simple generaliza-
tions of the distribution(2). Explicitly, they have the form

Psud =
1

M
o
a

fsuadp
bÞa

dsubd, s17d

where fsxd is a normalized probability distribution with unit
variance. IfA=0, Eq.(13) impliesz0=0. Such a condition is
stable under renormalization. Indeed, the transformation
fai→−fai for fixed a and i is a symmetry of the Hamil-
tonian withz0=0, but not of the term proportional toz0. This
symmetry is due to the fact that, for distributions of type
(17), we can writessW ·uWd2=oaua

2sa
2, which is symmetric under

the transformationssa→−sa at fixed u. In other words, the
theory with z0=0 describes models in which the reflection
symmetry of the spins is also preserved at fixed disorder.

In the case of discrete cubic-symmetric distributions of
type (17), we have

u0 =
12D2

M2 , w0 = − 12BD2. s18d

These conditions imply

u0 . 0, w0 , 0, Mu0 + w0 ø 0, s19d

where the last condition follows from the boundBù1/M.
The equalityMu0+w0=0 is obtained by using the distribu-
tion (2). The relations(18) and(19) should be considered as
indicative, since the mapping between thew4 Hamiltonian
(16) and the general Hamiltonian(14) also gives rise to
higher-order terms.
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It is also interesting to consider the effective continuum
Hamiltonian corresponding to Eq.(5). In this case we obtain

Hw4 =E ddxF1

2
s]mwW d2 +

1

2
rwW 2 − Do

a

qawa
2 +

1

4!
v0swW 2d2

+
1

4!
y0o

a

wa
4G . s20d

If Psqd is invariant under the interchangesqa↔qb, we can
write for the first momentsMa=a and Mab=b+cdab. A
simple calculation gives again the general Hamiltonian(14)
with z0=0 and

u0 =
D2

2
sa2 − bd, w0 = −

cD2

2
. s21d

Sinceb+cùa2, we obtain

u0 + w0 ø 0. s22d

Equality is obtained forPsqd=Padsqa−1d (in this case how-
ever w0=0). Finally, note that ifc=0 then we havew0=0.
Such a condition is stable under renormalization, and thus
this class of models is expected to have a different critical
behavior. It corresponds to the one of the randomly dilute
cubic models discussed in Ref.[22]. Distributions with this
property are, however, quite peculiar. They have the general
form

Psqd = fsq1dp
a=2

M

dsq1 − qad. s23d

The stability region of the quartic potential in thew4

Hamiltonian(3) is given by the conditions

Nu0 + v0 + Nw0 + y0 . 0, s24d

NMu0 + Mv0 + Nw0 + y0 . 0, s25d

u0 + v0 + w0 + y0 . 0, s26d

Mu0 + Mv0 + w0 + y0 . 0. s27d

However, as discussed in Ref.[12], in the zero-replica limit
N→0, the only relevant stability conditions are those ob-
tained by using replica-symmetric configurations. Therefore,
for the RCAM one should consider only Eqs.(24) and (25)
with N=0, i.e.,

v0 + y0 . 0 if v0 . 0,

Mv0 + y0 . 0 if v0 , 0. s28d

Equivalently, the relevant stability conditions can be ob-
tained by considering the Hamiltonians(16) and/or(20).

III. GENERAL RENORMALIZATION-GROUP
PROPERTIES

A. Fixed points of the theory

The properties of the RG flow are essentially determined
by its FP’s. Most of them can be identified by considering

the theories obtained when some of the quartic parameters
vanish. For example, we can easily recognize(a) the OsM
3Nd theory forv0=w0=y0=0; (b) N decoupled OsMd theo-
ries for u0=w0=y0=0; (c) M decoupled OsNd theories for
u0=v0=y0=0; (d) M 3N decoupled Ising theories foru0
=v0=w0=0; (e) the MN model (see, e.g., Refs.[23,24]) for
w0=y0=0; (f) the NM model forv0=y0=0; (h) N decoupled
M-component cubic models foru0=w0=0; (i) M decoupled
N-component cubic models foru0=v0=0; (j) the
sM 3Nd-component cubic model forv0=w0=0; (k) the ran-
domly dilutedM-component cubic model(see Ref.[22]) for
w0=0 andN=0; and(l) the tetragonal model[23,25] for M
=2 andw0=0.

The FP’s of these theories are also FP’s of the enlarged
model (3). Of course, there may also be FP’s that are not
related to the above particular cases. Their presence can be
investigated by low-ordere-expansion calculations. First-
ordere-expansion calculations[11] show the presence of 14
FP’s for M Þ2 and of 13 FP’s forM =2. As in the REIM
case, at two-loop order other OsÎed FP’s appear[12]: four
FP’s for M Þ2 and six FP’s forM =2 [17]. The two-loop
e-expansion results are summarized in Refs.[17,18]. In
Table I we report the leadinge-expansion terms for the lo-
cation of the FP’s(in the minimal-subtraction renormaliza-
tion scheme) and the corresponding stability eigenvalues.
The only stable FP’s are the O(0) and the REIM FP’s, which
are already present in models(a) and(i), respectively. These
results have also been supported by two-loop fixed-
dimension calculations[17]. In order to understand the rel-
evance of the various FP’s for the RCAM, we need to check
which one is accessible from the region of quartic parameters
relevant for the three-dimensional RCAM. This issue will be
investigated in Sec. IV by computing and analyzing five-loop
series in the framework of the fixed-dimension expansion.

B. Crossover behavior close to the pure spin model

The OsMd-symmetric FP located on thev axis describes
the critical properties of the pure spin system in the absence
of cubic anisotropy. It is interesting to compute the crossover
exponent in the presence of random anisotropy. Settingtp
;sT−Tpd /Tp, whereTp;TcsD0=0d is the critical tempera-
ture in the absence of anisotropy, in the limittp→0 andD0
→0 the singular part of the free energy can be written as

F = uutu2−afsD0
2uutu−fDd, s29d

whereut< tp+a1D0
2+a2tp

2+¯ is the scaling field associated
with temperature,a is the specific-heat exponent in the
OsMd theory, fD is the crossover exponent, andfsxd is a
scaling function. As a consequence of Eq.(29), for suffi-
ciently smallD0 the critical-temperature shift is given by

DTcsD0d ; TcsD0d − Tcs0d < aD0
2/fD + bD0

2 + cD0
4 + ¯.

s30d

The crossover exponentfD is related to the largest positive
RG dimension of the perturbations at the OsMd FP that are
present in the Hamiltonian(3), i.e., of the terms proportional
to u0, w0, and y0. For u0=w0=y0=0, the Hamiltonian(3)
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describesN decoupled OsMd-symmetric systems. The RG
dimension of the terms proportional tou0 and w0 can be
determined by writing[11]

o
abij

su0 + w0dabdfai
2 fbj

2 = MsMu0 + w0do
i j

EiE j

+ w0o
i ja

TaaiTaaj, s31d

where

Ei ;
1

M
o
a

fai
2 , Tabi ; faifbi − dabEi . s32d

The bilinearsEi and Tabi are, respectively, the energies and
the quadratic spin-2 operators of theN decoupled models. If
yE=1/n and yT are the corresponding RG dimensions, the
two terms given above have RG dimensionsyu=2yE−3
=a /n and yw=2yT−3. The perturbation proportional toy0
does not couple the different replicas and therefore its RG
dimensionyy is simply the RG dimension of the cubic per-
turbation, which is related to the RG dimension of the spin-4
perturbation of the OsMd FP [26,27]. Therefore, the OsMd
FP is perturbed by three terms of RG dimensionsyu, yw, and
yy, which can be determined using known results for the RG
dimensions of generic operators in an OsMd theory; see, e.g.,
Refs. [28,25] for reviews of results. Sincea is negative for

M ù2, we haveyu,0 and therefore the corresponding term
is always irrelevant. The exponentyT has been obtained by
using field-theoretical[26] and Monte Carlo methods[29]:
field-theoretical analyses giveyT=1.766s6d for M =2 and
yT=1.790s3d for M =3, while Monte Carlo simulations give
yT=1.756s2d for M =2 and yT=1.787s2d for M =3. Corre-
spondingly, we findyw=0.532s12d and yw=0.511s6d for M
=2, andyw=0.580s6d andyw=0.573s3d for M =3. Therefore,
the perturbation proportional tow0 is always relevant. Fi-
nally, using the results of Refs.[26,27] for the spin-4 pertur-
bations at the OsMd FP, we haveyy=−0.103s8d for M =2 and
yy=0.013s6d for M =3. This implies that they term is irrel-
evant for M =2, but relevant forM =3. In conclusion, for
both M =2 andM =3, the most relevant quartic perturbation
is given by thew term, which determines the crossover from
the pure critical behavior in the limit of small anisotropy
strength. Therefore,fD=ywn=0.357s3d for M =2 and fD
=ywn=0.412s3d for M =3. In the crossover limit in which
D0

2uutu−fD is held fixed, the operators with RG dimensionsyu
andyy give rise to scaling corrections. In particular, there are
corrections proportional totDy, with Dy;yyn−fD, Dy
=0.426s6d for M =2 andDy=0.403s5d for M =3, which are
more important than the usual OsMd-invariant corrections,
which vanish astD, with D<0.54 forM =2 andD<0.56 for
M =3 [25].

It is worth mentioning that the scaling behavior(29) with
the same crossover exponentfD also holds for a RAM with
generic distributionPsuWd, and in particular for the isotropic
case. Indeed, the additional term proportional toz0 appearing
in the Hamiltonian(14) has the same RG dimension of thew

TABLE I. Fixed points of the Hamiltonian(3) near four dimensions. We report the leading nontrivial contribution of the expansion in
powers ofe, taken from Refs.[11,17]. Here,Kd=s4pddGsd/2d /2, a±=sM −4±ÎM2+48d /8, b±=−sM +12±ÎM2+48d /6, A±± =6a±+3b±

+M +6. The general expressions for the stability eigenvalues of FP’s XI–XIV are rather cumbersome. We report their numerical values only
for M =3.

v* / Kd u* / Kd w* / Kd y* / Kd Stability eigenvalues

I Gaussian 0 0 0 0 vu=vv=vw=vy=−e

II O(M) 6
M+8e 0 0 0 vv=e ,vu=−4−M

M+8e ,vw=−4+M
M+8e ,vy= 4−M

M+8e

III O (0) 0 3
4e 0 0 vu=e ,vv=vw=vy=e /2

IV O(0) 0 0 3
4e 0 vu=vv=−e /2 ,vw=e ,vy=e /2

V Ising 0 0 0 2
3e vu=vv=vw=−e /3 ,vy=e

VI 3
2sM−1de

3sM−4d

8sM−1de
0 0 v1=e ,v2=vy= 4−M

4sM−1de ,vw=− 4+M
4sM−1de

VII 0 3
2e −3

2e 0 v1=vv=e ,v3=vy=−e

VIII Cubic 2
M e 0 0 2sM−4d

3M e vu=v2=−4−M
3M e ,vw=−4+M

3M e ,v4=e

IX M Þ2 1
M−2e M−4

4sM−2de
0 M−4

3sM−2de v1=e ,v2= 4−M
6sM−2de ,vw=

−s4+Md

6sM−2d ,v4=
−s4−Md

6sM−2d e

X 0 1
2e −1

2e 2
3e v1=e ,vv=v3=e /3 ,v4=−e /3

XI 3
A++

e 3a+
A++

e
3sM+4d

4A++
e

3b+
A++

e v1=e ,v2=1.33e ,v3=v4=−1.43e (for M =3)

XII 3
A+−

e 3a+
A+−

e
3sM+4d

4A+−
e

3b−
A+−

e v1=e ,v2=−v3=0.371e ,v4=−0.344e (for M =3)

XIII 3
A−+

e 3a−
A−+

e
3sM+4d

4A−+
e

3b+
A−+

e v1=e ,v2=−v3=0.435,v4=−0.403e (for M =3)

XIV 3
A−−

e 3a−
A−−

e
3sM+4d

4A−−
e

3b−
A−−

e v1=e ,v2=v3=−3.32e ,v4=−3.08e (for M =3)

XV REIM 0 0 7Î54
53

Îe ± 4
3
Î54

53
Îe vu=vv=v1= ±Î24

53
Îe ,v2=2e

XVI REIM 0 7Î54
53

Îe 0 ± 4
3
Î54

53
Îe vw=vv=−v1= 7Î24

53
Îe ,v2=2e

XVII M =2 72Î54
53

Îe ±Î54
53

Îe 0 ± 4
3
Î54

53
Îe vw=v3=−v1= 7Î24

53
Îe ,v2=2e

SPIN MODELS WITH RANDOM ANISOTROPY AND… PHYSICAL REVIEW E 70, 036104(2004)

036104-5



term at the OsMd FP. This can be inferred by rewriting

o
abij

faifbifajfbj = o
abij

TabiTabj + Mo
i j

EiE j , s33d

whereTabi andEi are defined in Eq.(32). The first term is the
most relevant one and therefore we obtainyz=2yT−3 and
alsoyz=yw.

Let us note that the relatively small value offD makes the
measurement offD from the critical-temperature shift for
small random anisotropy rather difficult. Indeed, in Eq.(30)
the termD0

2/fD is suppressed with respect to the first two
analytic terms proportional toD0

2 and D0
4, since 2/fD<4.9

s2/fD<5.6d for M =3 sM =2d. This explains the results of
Ref. [4] which measuredTc in crystalline Laves-phase
sDyxY1−xdAl2 for different values ofx. Since D0→0 as x
→1 [30], they were able to measureDTcsD0d for D0→0.
The experimental results were fitted assumingDTcsD0d
,D0

2/c, obtaining c=0.80s8d.This result is in substantial
agreement with the theoretical predictionDTcsD0d,D0

2, but
does not provide information on the crossover exponentfD.

For M ù3, pure systems with the Hamiltonian(15) do not
have a critical behavior in the OsMd universality class; see,
e.g., Refs.[23,27,22]. If the system has[111] as the easy
direction, its critical behavior belongs to a different univer-
sality class with reduced cubic symmetry, while systems with
[110] easy axis are expected to show a first-order transition.
In the latter type of system, randomness may soften the first-
order transition. This issue will be discussed in Sec. IV C.
On the other hand, we now show that in cubic systems with
[111] easy axis randomness is a relevant perturbation and
therefore, for small randomness, these systems show a cross-
over behavior with positive exponentfD; cf. Eq. (29). For
u0=w0=0 the Hamiltonian(3) reduces to the one forN de-
coupled systems with cubic symmetry. The RG dimensions
of the terms proportional tou0 and w0 at the cubic FP pro-
vide the crossover exponentfD. In order to determine them,
we use again Eq.(31). The RG dimension ofEi is yE=1/n,
where n is the correlation-length exponent, while that of
Uai;Taai, yU, is computed in Appendix A by resumming its
six-loop perturbative expansion. Thus, the RG dimensionsyu
andyw of the two terms appearing in the right-hand side of
Eq. (31) are given byyu=2yE−3=a /n and yw=2yU−3, re-
spectively. Sincea,0 at the cubic FP for anyM ù3, the
first term is irrelevant. On the other hand, the estimates ofyU
reported in Appendix A show thatyw.0 for anyM ù3. For
example yw=0.549s14d for M =3, and therefore fD

=0.387s14d.
Note that in a generic cubic-symmetric RAM, one should

also consider perturbations proportional toz0. We use again
Eq. (33). However, in the presence of cubic symmetry Tabi
[cf. Eq (32)] is not an irreducible tensor. One must consider
separatelyUai;Taai andTabi with aÞb, which have differ-
ent RG dimensionsyU and yT. Therefore, the term propor-
tional to z0 is the sum of three terms of RG dimensions
2yE−3=a /n, 2yU−3, and 2yT−3. The last one is the largest,
so thatyz=2yT−3. Using the results of Appendix A forM
=3, we findyz=0.600s4d. The exponentyz is larger thanyw.

Therefore, a generic cubic-symmetric RAM shows a differ-
ent crossover behavior with crossover exponentfD=yzn
=0.427s3d.

C. Stable fixed points

The critical behavior in the presence of random aniso-
tropy should be described by the stable FP of the theory(3)
which is accessible from the RCAM. The two-loop
e-expansion calculations of Ref.[17] summarized in Sec.
III A find two stable FP’s. One of them is located on theu
axis, and it is associated with the O(0) or self-avoiding-walk
universality class. This FP is also stable in three dimensions.
Indeed, the terms proportional tov0, w0, andy0 are interac-
tions transforming as the spin-4 representation of the OsM
3Nd group. Therefore, they have the same RG dimension
which is given byyv,w,y=−0.37s5d, obtained in Ref.[26]
from the analysis of six-loop fixed-dimension and five-loope
series. It was argued in Ref.[17], on the basis of two-loop
calculations, that the O(0) FP is not accessible from the pa-
rameter region relevant for the RCAM. This will be con-
firmed by the five-loop analysis of the RG flow presented in
Sec. IV.

For u0=v0=0 the Hamiltonian(3) corresponds to a cubic-
symmetric model and, forN→0, it is the sum ofM indepen-
dent models that are the field-theoretical analog of the
REIM. We will now show that the REIM FP is stable in the
theory(3). It is sufficient to show that the terms proportional
to u0 andv0 are irrelevant. For this purpose, we rewrite

o
i jab

su0 + v0di jdfai
2 fbj

2 = NsNu0 + v0do
a

Ea
2 + v0o

ai

Uai
2 ,

s34d

where Ea=s1/Ndoifai
2 and Uai=fai

2 −Ea. For N→0, Ei and
Uai have the same RG dimension(see Appendix A for the
proof), yE=yU=1/nr, wherenr is the correlation-length criti-
cal exponent of the REIM universality class. Therefore, the
RG dimension of the perturbation is given byyuv=2yE−3
=ar /nr, wherear is the REIM specific-heat exponent. Since
ar is negative (see the estimates reported in Refs.
[25,31,19]), the REIM FP is stable. Using the recent Monte
Carlo results reported in Ref.[19], we finally arrive at the
estimateyuv<−0.07. As we shall see in Sec. IV, the REIM
FP turns out to be accessible to the RCAM, and no other
stable FP exists in the region relevant for the RCAM. There-
fore, the REIM universality class describes the critical prop-
erties of the RCAM in the case it undergoes a continuous
transition. Estimates of several universal quantities for the
REIM universality class can be found in Refs.[25,31,19,32].
Note, however, that the critical exponent controlling the
leading scaling corrections differs from the one for the
REIM, which isDr <0.25[20,21]. In the RCAM the leading
scaling correction is due to the Hamiltonian terms propor-
tional to u0 andv0. They cause slowly decaying corrections
of order tD with

D = − ar = 0.049s9d. s35d

If Psqd=PaPasqad, i.e., the probability distributions of the
variablesqa are independent, the stability of the REIM FP
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can also be proved by starting directly from Eq.(20). Indeed,
such a Hamiltonian corresponds toM random-exchangew4

models coupled by the term proportional tov0. Such a term
has the formoabEaEb, whereEa=s1/Ndwa

2 is the energy of
the REIM. Therefore, this perturbation has RG dimension
2/nr −3=ar /nr, which is negative. Thus, the coupling among
the models is irrelevant, and thus it does not change the
universality class of the system. IfPsqd does not factorize,
the M w4 models are also coupled by disorder. The above-
reported analysis shows that also this coupling is irrelevant,
its RG dimension beingar /nr ,0.

As discussed in Sec. II, in the case of a generic random
cubic-symmetric distributionPsuWd, the Hamiltonian(14) also
contains the term proportional toz0. It is important to note
that the REIM FP is unstable with respect to this perturba-
tion, since its RG dimensionyz is positive at the REIM FP.
The dimension of this perturbation,yz, can be computed by
rewriting the term proportional toz0 as

o
abij

faifbifajfbj = o
ab

o
iÞ j

TaijTbij + o
ab

o
i

UaiUbi + No
ab

EaEb,

s36d

whereTaij ;faifaj with i Þ j . Therefore, this perturbation is
the sum of three terms that have RG dimensions 2yT−3,
2yU−3, and 2yE−3. Using the results reported in Appendix
A, one finds that the most relevant term is the first one, so
that

yz = 2yT − 3. s37d

Using the estimateyT=2.08s3d reported in Appendix A, one
obtains

yz = 1.16s6d, fz ; yzn = 0.79s4d, s38d

wherefz is the corresponding crossover exponent.

D. Critical behavior for infinitely strong random anisotropy

In this section, we wish to investigate the general model
(5) in the limit of infinite disorder, showing that, under some
mild hypotheses for the probability distributionPsqd, one has
REIM critical behavior forM =2 andM =3 and no transition
for M ù4. This analysis further confirms the results of Sec.
III C.

We first consider the caseD0→ +`. We suppose that the
distribution Psqd is such that there is only one directionk
such thatqk=maxb qb (or at least that this condition is satis-
fied with probability 1). This is the case if the distribution is
continuous and is also true for the distributionPsqd derived
from Eq.(2) (note thatqa=ua

2). Because of the assumption on
Psqd, for D0→ +` the spinsW is constrained to lie along thek
direction, i.e.,sk= ±1, sa=0 for aÞk. Thus, in this limit we
can rewrite the Hamiltonian in the following way. At each
site we defineM Ising variablessx,a and M disorder vari-
ablesrx,a. The Ising variables assume values ±1, while the
disorder variables assume values 0 and 1 with probabilities
induced by the distribution ofqW:

rx,a = H1 if qx,a . qx,b for everyb Þ a,

0 otherwise.
J

Then, the average value of a quantityOssx,ad is given by

kOl = fkOsrx,asx,adlsgr, s39d

where f·gr indicates the average over the disorder variables
rx,a and k·ls indicates the sample average with Hamiltonian

H = − Jo
a

o
kxyl

sx,asy,arx,ary,a. s40d

If O depends only on a single component of the spins, say it
depends only onsx,1, we can integrate outsx,a and rx,a for
aù2. Thus, the Hamiltonian becomes a REIM Hamiltonian
with disorderrx,1. Now, we use the symmetry ofPsqd to
conclude that the probability thatra is 1 must be independent
of a. Sinceoara is always equal to 1, we obtain thatrx,1
=1 with probability 1/M and rx,1=0 with probability 1
−1/M. Therefore, we obtain that correlation functions ofs1
are exactly equal to the correlation functions of the site-
diluted Ising model with vacancy density1−1/M. Note that
this result is not true for correlation functions that involve
different components of the spins. Indeed, the Hamiltonian
(40) corresponds toM REIMs, but they are coupled by the
disorder variables. Thus, these correlation functions are not
simply obtained by multiplying REIM correlation functions.
These considerations allow us to predict the behavior of the
model (5) for D0→ +`. Since the REIM has a continuous
transition for spin densityp.pc, pc=0.311 608 1s13d on a
cubic lattice[33], we predict that the model has a continuous
transition forM =2 andM =3 and no transition at all forM
ù4.

Let us now consider the opposite caseD0→−`. If the
distribution Psqd is such that there is only one directionk
such thatqk=minb qb, the previous argument applies with no
changes. Note that the distribution(2) does not satisfy this
condition for M ù3. Indeed, in the limitD0→−` the spins
are constrained to be orthogonal toqW, and therefore cannot be
considered as Ising variables. In this particular case, the be-
havior at the transition, if it exists, is not predicted by this
argument.

IV. RENORMALIZATION-GROUP FLOW IN THE
QUARTIC-COUPLING SPACE

A. The fixed-dimension five-loop expansion

In this section we study the RG flow of the theory(3),
determining the stable FP’s and their attraction domain. For
this purpose, we determine the five-loop perturbative expan-
sion of the b functions in terms of appropriately defined
zero-momentum quartic couplings at fixed dimension. In the
present case we defineu, v, w, andy by writing

Gaibjckdl
s4d s0d = mZf

−216p

3
su RMNAaibjckdl + v RMBaibjckdl

+ w RNCaibjckdl + y Daibjckdld, s41d

where RK=9/s8+Kd, and A, B, C, and D are appropriate
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tensors defined so that at the tree levelu0=mu RMN, v0
=mv RM, w0=mw RN, and y0=my. The massm and the
renormalization constantZf are defined by

Gaibj
s2d spd = dabdi jZf

−1fm2 + p2 + Osp4dg. s42d

Here Gs4d and Gs2d are the four- and two-point one-particle
irreducible correlation functions.

We computed theb functions to five loops. This required
the calculation of 161 Feynman diagrams. We employed a
symbolic manipulation program, which generated the dia-
grams and computed the symmetry and group factors of each
of them. We used the numerical results compiled in Ref.[34]
for the integrals associated with each diagram. The five-loop
series of theb functionsbu, bv, bw, andby for the physically
interesting casesN=0 andM =2,3 arereported in Ref.[35],
with a discussion of their checks. At two loops the series
agree with the expansions reported in Ref.[17]. The series
for generic values ofN andM are available on request.

Perturbative series are divergent and thus a careful analy-
sis is needed in order to obtain quantitative predictions. In
the case of systems without randomness, they are conjec-
tured to be Borel summable and this allows one to use the
Padé-Borel method or methods based on a conformal map-
ping [36]. In random systems, the perturbative approach
faces additional difficulties: the perturbative series are ex-
pected not to be Borel summable[37,38]. Nonetheless, in the
REIM case quite reasonable estimates of the critical expo-
nents have been obtained by using the fixed-dimension ex-
pansion ind=3 (see, e.g., Refs.[25,31]). Similarly, the usual
resummation methods applied to the RCAM expansions give
quite stable results, at least when the quartic couplings are
not too large, giving us confidence on the correctness of the
conclusions.

B. The RG trajectories

The knowledge of theb functions allows us to study the
RG flow in the space of the quartic renormalized couplings
u, v, w, andy. For this purpose we follow closely Ref.[21].
The RG trajectories are lines starting from the Gaussian FP
(located atu=v=w=y=0) along which the quartic Hamil-
tonian parametersu0, v0, w0, andy0 are kept fixed. The RG
curves in the coupling space depend on three independent
ratios of the quartic couplings. The RG trajectories can be
determined by solving the differential equations

− l
dgi

dl
= bgi

, s43d

where gi =u,v ,w,y, and lP s0,`d, with the initial condi-
tions

gis0d = 0, Udgi

dl
U

l=0
= si , s44d

wheres1=su;u0/ uv0u, s3=sw;w0/ uv0u, s4=sy;y0/ uv0u, and
s2= +1 if v0.0, s2=−1 if v0,0. The functionsgisl ,sid pro-
vide the RG trajectories in the renormalized-coupling space.
The attraction domain of a FPgi

* is given by the values ofu0,
v0, w0, andy0 corresponding to trajectories ending atgi

* , i.e.

trajectories for whichgisl=` ,sid=gi
* . We recall that the

OsMd FP is located on thev axis atv* <1.40,1.40 forM
=2,3 respectively[39,40]; the O(0) FP lies in theu axis at
u* <1.39(Refs.[39,40]); the REIM FP lies in thew-y plane
at w* <−0.7 and y* <2.3 (we report here the field-
theoretical estimates of Ref.[24]; Monte Carlo estimates are
given in Ref.[19]).

C. Results

In this section we report our analyses of the five-loop
perturbative series. We have resummed theb functions by
using the Padé-Borel method. The major numerical problem
we faced was the fact that most of the approximants were
defective in some region of the coupling space, forbidding a
complete study of the RG flow. This is not unexpected since
the perturbative series are not Borel summable. Approximant
f3/1g for bu, f4/1g for bv, andf3/2g for bw with b=1 [41]
were not defective in all the region of the RG flow we con-
sidered(in some cases the Padé approximant to the Borel
transform had a pole on the positive real axis but far from the
origin, in a region that gives a negligible contribution to the
resummed function). On the other hand, all approximants for
by were defective somewhere in the region we wished to
investigate. Forby we used approximantf3/2g with b=1,
that had the least extended defective region. All results we
present here were obtained by using these approximants. It
must be stressed that other choices gave results that were
similar in the regions in which they were well defined.

First, we checked the general results reported in Sec. III.
We considered the OsMd, cubic, O(0), and REIM FP’s and
for each of them we determined the stability eigenvalues.
The results are in full agreement with the conclusions of Sec.
III, confirming that the O(0) and the REIM FP’s are stable.
Then, we looked for additional FP’s in addition to those
identified by thee-expansion analysis of Sec. III A. For this
purpose we considered the RG flow starting from arbitrary
values ofu,v ,w,y. We only observed runaway trajectories
or a flow toward either the REIM or the O(0) FP’s, confirm-
ing that the REIM and the O(0) are the only stable FP’s. In
particular, trajectories corresponding to Hamiltonian param-
etersw0,0, u0.0, u0+w0,0, and that satisfy the stability
bound(28) never flow toward the O(0) FP, which is therefore
not accessible from this region. They either flow toward the
REIM FP or apparently run away toward infinity.

For the purpose of illustration, we first consider the case
y0=0, w0/u0=−M, andv0.0, which apparently corresponds
to the model(6) with distribution(2) [cf. Eq. (18)]; note that
B=1/M in this case. In Fig. 1 we show the RG trajectories
for M =3 for several values ofsu.0. The approximant ofby
is defective for 0.05&su&0.3 andy close to 1. This explains
the sudden change of direction of the trajectory withsu
=0.3 in Fig. 1 wheny is close to 1. ForM =3 sM =2d the RG
trajectories appear to approach the REIM FP for 0,su
&0.9 s0,su&1.4d. For larger values ofsu the flow runs
close to regions in which some approximant is defective. The
trajectories appear to flow toward infinity, but this could be
an artifact of the resummation. In any case, if true, this
would imply that the corresponding systems do not undergo
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a continuous transition. As a consequence, sincesu is directly
related to the anisotropy strengthD, the continuous transition
would be expected to disappear for sufficiently large values
of D. These conclusions do not immediately apply to fixed-
length spin systems, i.e., to the Hamiltonian(1) since in this
casev0=+` [42]. Thus, it is not clear which is the correct
value ofsu even foru0=`. The critical behavior of this sys-
tem for strong disorder has been discussed in Sec. III D.

The qualitative picture does not change if we do not re-
quire w0/u0=−M and sy=0. For instance, we can consider
the casew0/u0=−M, v0.0, and arbitrarysy. We are able to
resum reliably the perturbative series forsy.−0.7 and there
we observe that some trajectories flow toward the REIM FP,
while others run away to infinity. The attraction domain of
the REIM FP enlarges with increasingsy: it is approximately
bounded bysu&0.9+0.6sy for M =3 (su&1.4+1.4sy for M
=2) in the region −0.6&sy&0.3 s−0.7&sy&1d. For larger
value of sy, the attraction domain becomes even larger and
extends beyond the lines reported above. Forsy&−0.6 some
approximants become defective and we cannot reliably de-
termine the RG flow. As in the casesy=0, there is some
evidence that trajectories flow toward infinity forsy&−1,
while for −1&sy&−0.6 they may still flow to the REIM FP.

Then we investigated the behavior forv0,0, although
this region does not appear to be of physical interest. As in
the pure case, all trajectories apparently run away to infinity.

Finally, let us discuss whether O(0) critical behavior can
be observed by appropriately tuning the model parameters.
We have investigated this question in detail. We find that the
O(0) FP can be reached only ifu0+w0.0, irrespective of the
other parameters as long asu0.0 andw0,0. This result can
be proved straightforwardly in the limiting casev0=0. In-
deed, sincebv=0 for v=0, if we start withv0=0 the flow
will be confined in the hyperplanev=0. But forv=0 we can
use the identities

busu,0,w,yd + bwsu,0,w,yd = bREIM,usu + w,yd,

bysu,0,w,yd = bREIM,ysu + w,yd, s45d

holding for N=0, wherebREIM,usu,yd and bREIM,ysu,yd are
the b functions of the REIM model obtained by settingv

=w=0 andM =1 (the corresponding six-loop series are re-
ported in Ref.[27]). These identities are proved in Appendix
B. They show that the flow for the couplingsu+w andy is
identical to the flow observed in the random-exchangew4

theory. Therefore, foru0+w0=0 we observe pure Ising be-
havior, while for u0+w0,0 su0+w0.0d RG trajectories
flow toward the REIM[O(0)] FP. Therefore, ifw0/u0,−1,
as implied by Eq.(22), only REIM critical behavior can be
observed. Forv0.0, similar conclusions are obtained nu-
merically: The attraction domain of the O(0) FP is included
in the regionw0/u0.−c, where the constantc is positive and
smaller than 1, depends onsw, and tends to 1 assw→−`, i.e.
v0→0.

In conclusion, our analysis gives a full picture of the criti-
cal behavior for cubic magnets that havev0.0—we have
v0=+` for fixed-length spins[42]. ForM =2 the pure system
has a criticalXY transition forsy.−2/3, an Ising transition
for sy=−2/3, and a first-order transition for −1,sy,−2/3
[values of the parameters such thatsyø−1 are not allowed
since they do not satisfy the stability bound(28)]. Note that
first-order transitions cannot be observed in the pure model
(15) with fixed-length spins. Indeed, for the strongest pos-
sible negative anisotropy,K=−`, the Hamiltonian can be
written as two decoupled Ising models[43], and thus the
system withK=−` exactly corresponds tosy=−2/3. As a
consequence, finite values ofK havesy.−2/3, and therefore
the model is expected to always have anXY transition. Ran-
domness changes the critical behavior. For small randomness
and small anisotropy, we always predict REIM critical be-
havior, while for large disorder(unless we consider fixed-
length spins; cf. Sec. III D) we do not expect a continuous
transition. Note that the behavior of systems with −1,sy,
−2/3 remains unclear since in this region we are not able to
resum reliably the perturbative expansions. In particular, we
cannot clarify if softening occurs. A Monte Carlo simulation
[44] found that model(15) with K=−` has a continuous
transition for small disorder, in agreement with our results.

For M =3 we expect a continuous transition forsyù0 and
a first-order one forsy,0. If we add randomness to systems
with sy.0, the continuous transition survives but now be-

FIG. 1. Projections of the RG flow
for the three-component case,M =3, in
the y-w, y-v, andy-u planes, as a func-
tion of su;u0/v0, for u0.0, v0.0, and
w0,0. Herey0=0 and 3u0+w0=0. The
REIM FP corresponds tou* = v* =0,
w* <−0.7, andy* <2.3 (Ref. [24]).
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longs to the REIM universality class; for large disorder the
transition may disappear. Forsy,0 one may observe soften-
ing, i.e., the first-order transition may be changed into a con-
tinuous one by small disorder. Note that softening always
occurs for infinite disorder,D0=+`, in the model(5), inde-
pendently of the sign ofy0, under mild assumptions on the
distributionPsqd; see Sec. III D.

ACKNOWLEDGMENT

P.C. acknowledges financial support from EPSRC Grant
No. GR/R83712/01.

APPENDIX A: RENORMALIZATION-GROUP
DIMENSIONS OF BILINEAR OPERATORS IN THE CUBIC-

SYMMETRIC F4 THEORY

In this appendix we compute the RG dimensions of bilin-
ear operators in the cubic-symmetric theory

Hc =E ddxH1

2
f]mwsxdg2 +

1

2
rwsxd2 +

1

4!
u0fwsxd2g2

+
1

4!
v0o

i=1

N

wisxd4J , sA1d

wherew is anN-component field. The bilinear operators can
be written in terms of tensors belonging to different irreduc-
ible representations of the cubic group:

E =
1

N
o
k

wk
2, sA2d

Ui = wi
2 −

1

N
o
k

wk
2, sA3d

Tij = wiw j, i Þ j . sA4d

The RG dimension of the energy operatorE is yE=1/n,
wheren is the correlation-length exponent. The RG dimen-
sions of the operatorsUi andTij , respectivelyyU andyT, in
the cubic-symmetric theory(A1) will be computed below.
Note that in OsNd-symmetric theories the tensorsUi andTij

belong to the same irreducible representation and therefore
yT=yU. In cubic systems this is no longer the case.

In order to computeyU andyT, we consider the perturba-
tive approach in terms of the zero-momentum quartic cou-
plingsu andv at fixed dimension. We refer the reader to Ref.
[27] for notation and definitions; there one can also find the
six-loop perturbative expansion of theb functions and of the
RG functions associated with the standard exponents. In or-
der to compute the RG dimensions ofUi andTij , we consider
the related RG functionsZU andZT, defined in terms of the
zero-momentum one-particle irreducible two-point functions
GU

s2ds0d andGT
s2ds0d with the insertion of the operatorUi and

Tij , respectively, i.e.;

GU
s2ds0di,kl = ZU

−1Bi,kl, GT
s2ds0di j ,kl = ZT

−1Aij ,kl, sA5d

where B and A are appropriate constant tensors such that
ZU=ZT=1 at the tree level. Then we compute the RG func-
tions hU andhT defined by

hU,Tsu,vd = U ] ln ZU,T

] ln m
U

u0,v0

= bu
] ln ZU,T

]u
+ bv

] ln ZU,T

]v
,

sA6d

wherebu andbv are theb functions.
We computed the functionsGU,T

s2d s0d to six loops. The re-
sulting six-loop series ofhU,Tsu,vd are

hUsu,vd = −
2u

8 + N
−

1

3
v + u2 12 + 2N

3s8 + Nd2 +
4

3sN + 8d
uv +

2

27
v2

+ o
i j

eij
Uuiv j , sA7d

hTsu,vd = −
2u

8 + N
+ u2 12 + 2N

3s8 + Nd2 +
4

9sN + 8d
uv + uo

i j

eij
Tuiv j ,

sA8d

whereu andv are normalized so that

mu=
8 + M

48p
Zuu0, mv =

3

16p
Zvv0, Zu,v = 1 +Osu,vd,

sA9d

and the coefficientseij
U aneij

T are reported in Tables II and III,
respectively. Note thatu andv correspond toū andv̄ in Ref.
[27]. The RG dimensionsyU and yT are obtained byyU,T
=2+hU,T−h, wherehU,T is the value obtained by resumming
the corresponding series, evaluating it atu=u*, v=v*, where
su* , v* d, is the stable FP.

In the case of the REIM, i.e., in the limitN→0, one has
yU=yE=1/n. Indeed,kwi

2wkwll1PI andkSiwi
2wkwll1PI are both

finite and nonvanishing forN→0. Therefore, we have for
N→0

kNUiwkwll1PI = −Ko
j

w j
2wkwlL1PI

+ OsNd = − kNEwkwll1PI

+ OsNd. sA10d

Using the Monte Carlo estimaten=0.683s3d (Ref. [19]), we
obtainyU=1.464s6d. The series forhT was already reported
in Ref. [45]. Its analysis provided the estimateyT=2.08s3d.

For N=2 the stable FP of the cubic theory is the O(2) FP,
so yU=yT=1.766s3d [26]. For Nù3 the OsNd FP is unstable
and the RG trajectories flow toward another FP characterized
by a discrete cubic symmetry. The analysis of the series,
using the same procedure reported in Ref.[27], gives the
estimates

yUsN = 3d = 1.774s7d, yTsN = 3d = 1.800s2d, sA11d

yUsN = 4d = 1.696s8d, yTsN = 4d = 1.874s3d. sA12d
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APPENDIX B: SOME RENORMALIZATION-GROUP
IDENTITIES

In this appendix we prove relations(45). Morever, we
show that, in the limitN→0, the RG functions do not de-
pend onM for v=0.

Let us consider the Hamiltonian forv0=0 and rewrite

expF−
1

4! oi j ,ab

su0 + w0dab + y0dabdi jdfai
2 fbj

2 G ,E dldradsai

3 expF1

2Sl2 + o
a

ra
2 + o

ai

sai
2 D +

1

2Î3
o
ai

sÎu0l

+ Îw0ra + Îy0saidfai
2 G , sB1d

whereasid runs from 1 toMsNd andl, ra, andsai are aux-
iliary fields. Then let us consider then-point irreducible cor-
relation function. We will show that it has the form

kfa1i1
¯ fanin

l = o
a

caQa
a1i1¯anin, sB2d

whereQa are group tensors(products of Kroneckerd func-
tions), the scalar factorsca do not depend onM, and the sum
runs over all possible independent group tensors. In terms of
the auxiliary fields, Feynman diagrams contain loops off

fields and n/2 open lines off fields connected by the
auxiliary-field lines. The group factor associated with each
diagram is computed as follows. One assigns indicesai to f
ands propagators and indicesa to r propagators, considers
the product of the factorsV (reported below) associated with
each vertex, and sums over all assigned indices. In order to
prove theM independence we will show that, because of the
Kroneckerd’s appearing in the diagrams, none of these sums
is effectively performed in the limitN→0, so that no factor
of M can appear. The factorsV are given by

Vsl,fai,fbjd =
Îu0

Î3
dabdi j ,

Vsrc,fai,fbjd =
Îw0

Î3
dabcdi j ,

Vssck,fai,fbjd =
Îy0

Î3
dabcdi jk , sB3d

where abcsi jkd run from 1 to MsNd. First, note that allf
loops must contain at least asff vertex, otherwise by sum-
ming over the indices of thef fields appearing in the loop
one obtains a factor ofN. As a consequence, all loops give
rise to a very simple effective vertex for the auxiliary fields:

TABLE II. The coefficientseij
U [cf. Eq. (A7)].

i , j sN+8dieij
U

3,0 −18.3128−3.43328N+0.216746N2

2,1 −9.15642−0.17027N

1,2 −1.17334

0,3 −0.0443103

4,0 140.799+37.5734N+1.03627N2+0.0943426N3

3,1 93.8662+5.52597N−0.0781363N2

2,2 18.4511−0.0667897N

1,3 1.40677

0,4 0.0395196

5,0 −1340.07−416.717N−17.6226N2+0.911281N3

+0.0508337N4

4,1 −1116.73−98.6844N+1.52723N2−0.0301952N3

3,2 −298.289−2.54766N−0.0492195N2

2,3 −35.2065+0.140508N

1,4 −1.98589

0,5 −0.0444004

6,0 15651.3+5665.65N+433.687N2+1.06755N3

+0.679106N4+0.031393N5

5,1 15651.3+1935.63N+8.74297N2+0.581411N3

−0.00927903N4

4,2 5294.38+134.776N−1.13059N2−0.038664N3

3,3 848.418−2.51108N+0.0323227N2

2,4 72.4799−0.318348N

1,5 3.24291

0,6 0.0603632

TABLE III. The coefficientseij
T [cf. Eq. (A8)].

i , j sN+8dieij
T

2,0 −18.3128−3.43328N+0.216746N2

1,1 −3.09273+0.216746N

0,2 −0.0337239

3,0 140.799+37.5734N+1.03627N2+0.0943426N3

2,1 39.0459+1.53797N+0.12579N2

1,2 2.66843+0.0769829N

0,3 0.0716893

4,0 −1340.07−416.717N−17.6226N2+0.911281N3

+0.0508337N4

3,1 −497.159−32.4255N+1.57919N2+0.0847229N3

2,2 −53.6464+0.443225N+0.062623N2

1,3 −2.39176+0.0256721N

0,4 −0.0421612

5,0 15651.3+5665.65N+433.687N2+1.06755N3

+0.679106N4+0.031393N5

4,1 7460.04+849.888N+0.972279N2+1.37677N3

+0.062786N4

3,2 1175.99+25.2714N+1.12305N2+0.0567755N3

2,3 88.2226+0.60426N+0.0297911N2

1,4 3.53359+0.0136874N

0,5 0.0607723
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kl ¯ lra1
¯ ran

sb1i1
¯ sbmim

l , da1¯anb1¯bm
di1¯im

,

sB4d

where we have written only the dependence on the group
indices. Then, given a diagram, let us consider the reduced
diagram in which allf loops are replaced by the correspond-
ing effective vertices. Thesai propagators form several con-
nected paths. It is easy to convince oneself that each of these
paths must end at an openf line; otherwise, by summing
over the indicesi associated with thes lines, one obtains
factors of N. As a consequence, all effective vertices are
connected bys propagators to the openf lines. Therefore,

by summing over the indices associated with thef and s
propagators one obtains expressions in which all remaining
indices(those related tor propagators) are equal to external
ones and are not summed over. We have thus proved that
correlation functions expressed in terms of the bare param-
eters do not depend onM. SinceRMN is M independent for
N→0, this result extends trivially to the RG functions ex-
pressed in terms of the renormalized couplings.

To prove the identities(45) we now exploit theM inde-
pendence. ForM =1 the theory corresponds to the REIM
model with couplingsu0+w0 and y0. SinceRMN=RN for N
→0, su+vd /m is a function ofu0+w0. The result follows
immediately.
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